
ibm.com/redbooks

Front cover

A Software Architect’s Guide
to New Java Workloads in
IBM CICS Transaction Server

Rufus Credle
George Burgess

Paul Cooper
Mark Hiscock

Mark Hollands
Mitch Johnson

Subhajit Maitra
Geoffrey Pirie

Bei Chun Zhou

Review the architectural and technical
benefits of this approach

Get details about new licensing models
at attractive prices

Learn about web and mobile
business rules and batch
workload processes

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

International Technical Support Organization

A Software Architect’s Guide to Java Workloads in IBM
CICS Transaction Server

December 2014

SG24-8225-00

© Copyright International Business Machines Corporation 2014. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

First Edition (December 2014)

This edition applies to IBM CICS Transaction Server for z/OS, IBM WebSphere Application Server Liberty
Profile, WebSphere Application Server for z/OS, and IBM Operational Decision Manager for z/OS.

Note: Before using this information and the product it supports, read the information in “Notices” on
page vii.

Contents

Notices . vii
Trademarks . viii

IBM Redbooks promotions . ix

Preface . xi
Authors. xii
Now you can become a published author, too . xiv
Comments welcome. xiv
Stay connected to IBM Redbooks .xv

Part 1. New workloads on the mainframe . 1

Chapter 1. Mainframe workload pricing . 3
1.1 Advantages of the Value Unit Edition pricing model . 4
1.2 CICS Transaction Server Value Unit Edition benefits . 4
1.3 Business value . 5
1.4 Why Java works on the mainframe . 5
1.5 When and where to put Java on System z . 6
1.6 Defying gravity . 7
1.7 Solution overview . 8

1.7.1 Using the Liberty profile to modernize interfaces . 8
1.7.2 Optimizing mobile workloads to connect with customers and employees 9
1.7.3 Building timely, scalable decisions into software . 9
1.7.4 Updating batch processing . 10

1.8 Value Unit Edition incentives and implementation scenarios . 10
1.8.1 Do more sooner at less cost . 10
1.8.2 Do things faster . 11

Part 2. Liberty profile and CICS . 13

Chapter 2. Introduction to the Liberty JVM server. 15
2.1 Evolving application servers . 16
2.2 Advantages . 16

2.2.1 Liberty and the CICS Transaction Server for z/OS Value Unit Edition 16
2.3 Strengths. 17

2.3.1 Simple configuration . 17
2.3.2 Runtime composition with features and services . 17
2.3.3 Developer focus . 17

2.4 Liberty in the CICS Transaction Server. 18
2.4.1 Integration with CICS TS Transaction Server for z/OS. 19

2.5 Security . 20
2.5.1 Introduction to security with Liberty in CICS TS . 20
2.5.2 Security overview . 21
2.5.3 The Liberty server angel process . 22
2.5.4 SAF roles . 23

Chapter 3. Using CICS Liberty JVM servers to develop application interfaces 25
3.1 CICS Liberty JVM server scenarios . 26

3.1.1 Scenario one. 26
© Copyright IBM Corp. 2014. All rights reserved. iii

3.1.2 Scenario two . 27
3.2 CICS Liberty JVM server features for the presentation layer . 28

3.2.1 JavaServer Pages 2.2. 29
3.2.2 JavaServer Faces 2.0 . 29
3.2.3 Java Servlet 3.0 . 29
3.2.4 JavaScript Object Notation 1.0 . 30
3.2.5 Java API for RESTful Web Services . 30
3.2.6 Java API for XML Web Services 2.2 . 30
3.2.7 Java Architecture for XML Binding 2.2 . 31
3.2.8 Bean Validation 1.0 . 31
3.2.9 PHP support by Dynamic Scripting Feature Pack. 31

3.3 Migrate existing Java presentation logic to CICS Liberty JVM server. 32

Chapter 4. Porting JEE applications to a CICS Liberty JVM server 33
4.1 Porting a Java application to a CICS Liberty JVM server . 34

4.1.1 Which Java applications should be migrated to CICS TS. 34
4.1.2 Using the OSGi framework . 35

4.2 Developing new application using JCICS classes . 36
4.2.1 Java access to records and their fields . 37
4.2.2 Debugging Java in CICS Liberty JVM server . 40

4.3 Developing new applications using other Liberty features . 41
4.3.1 CICS Liberty JVM server Java Database Connectivityoptions 41
4.3.2 JDBC connection options . 42

Part 3. Mobile devices . 45

Chapter 5. Connecting mobile devices to CICS Transaction Server 47
5.1 Mobile devices and IBM CICS Transaction Server for z/OS Value Unit Edition 48
5.2 Use of mobile devices with CICS TS . 49
5.3 Accessing services by using XML and JSON . 50

5.3.1 Extensible Markup Language (XML). 50
5.3.2 JavaScript Object Notation (JSON). 51
5.3.3 Key differences between XML and JSON. 52

5.4 CICS TS web service development strategies . 53
5.4.1 Bottom-up service enablement . 53
5.4.2 Top-down service enablement . 53
5.4.3 Meet-in-the-middle service enablement . 54

5.5 IBM MobileFirst Platform Foundation and CICS TS . 54
5.6 IBM DataPower and CICS TS. 56
5.7 Configuration for high availability . 56

Chapter 6. Mobile devices and CICS Liberty JVM server . 59
6.1 Hosting transformation services in CICS Liberty JVM server . 60

6.1.1 Java API for XML Web Services (JAX-WS) . 60
6.1.2 Java API for RESTful Web Services (JAX-RS). 62

6.2 z/OS Connect and CICS Liberty JVM server . 63
6.3 Connectivity from Java to CICS TS. 64
6.4 Security considerations . 64
6.5 Other considerations . 65

Chapter 7. Mobile devices and CICS TS Java. 67
7.1 Hosting transformation services in CICS TS Java . 68
7.2 Characteristics of CICS data transformation. 69
7.3 The Java-based pipeline . 69
iv A Software Architect’s Guide to Java Workloads in IBM CICS Transaction Server

7.4 Security considerations . 70
7.5 Other considerations . 70

Part 4. IBM Operational Decision Manager. 71

Chapter 8. Decision management integrated in IBM CICS Transaction Server 73
8.1 Introduction to decision management . 74

8.1.1 Common business decisions that require managing . 74
8.1.2 Where most decisions are made today. 74

8.2 IBM Operational Decision Manager for z/OS . 75
8.2.1 Operational Decision Manager components . 76
8.2.2 Create decisions using the Rule Designer . 77
8.2.3 Centrally manage decisions by using the Decision Center 79
8.2.4 Execute decisions by using the Decision Server . 80

8.3 CICS TS rule-owning region architecture . 81
8.3.1 Cost effectiveness. 82

8.4 Decision management summary. 82

Chapter 9. Implementing decision management in CICS TS . 85
9.1 Objectives . 86

9.1.1 Solution requirements . 86
9.2 Architecture . 87
9.3 Implementation . 88

9.3.1 Rule application development . 88
9.3.2 Runtime configuration . 90
9.3.3 Deployment and integration . 92

9.4 Solution summary . 94

Part 5. Modern Batch feature . 95

Chapter 10. Modern batch workloads . 97
10.1 Business pressures on traditional batch processing . 98

10.1.1 The “dedicated batch” window is disappearing. 98
10.1.2 The value of shared services . 99
10.1.3 Java for batch processing . 99
10.1.4 Conflicting needs of CICS applications and z/OS batch applications 100

10.2 WebSphere Java batch and batch container services . 101
10.2.1 Definition of a batch environment . 101
10.2.2 CICS functions . 101
10.2.3 WebSphere Java batch. 102
10.2.4 Job control language. 103
10.2.5 Integration with enterprise schedulers . 104
10.2.6 Checkpoint and job restart services . 105
10.2.7 Data record read and write support services . 105
10.2.8 Job resiliency services . 106

10.3 Introduction to CICS batch support . 107
10.3.1 CICS support for modern batch . 107

10.4 Running batch applications in CICS . 108
10.4.1 WebSphere batch environment architecture. 108

10.5 Reasons to run a batch application in CICS . 110
10.6 Benefits of running batch jobs within CICS . 110
10.7 Implications of running batches in CICS . 111
10.8 Summary. 111
 Contents v

Chapter 11. Modern batch use scenario . 113
11.1 Java batch approaches . 114
11.2 Architecture . 114

11.2.1 Workflow . 114
11.2.2 High availability consideration. 115
11.2.3 Security consideration. 116

11.3 Implementation . 116
11.3.1 Install and configure CICS TS TS Feature Pack for Modern Batch 116
11.3.2 Developing a batch application . 117
11.3.3 Deploying the batch application in CICS. 119
11.3.4 Submit the xJCL to run the batch job . 120

Related publications . 123
IBM Redbooks . 123
Online resources . 123
Help from IBM . 125
vi A Software Architect’s Guide to Java Workloads in IBM CICS Transaction Server

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or imply that only that IBM product,
program, or service may be used. Any functionally equivalent product, program, or service that does not
infringe any IBM intellectual property right may be used instead. However, it is the user's responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The
furnishing of this document does not grant you any license to these patents. You can send license inquiries, in
writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may make
improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time
without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in any
manner serve as an endorsement of those websites. The materials at those websites are not part of the
materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without incurring
any obligation to you.

Any performance data contained herein was determined in a controlled environment. Therefore, the results
obtained in other operating environments may vary significantly. Some measurements may have been made
on development-level systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been estimated through
extrapolation. Actual results may vary. Users of this document should verify the applicable data for their
specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm the
accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the sample
programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore,
cannot guarantee or imply reliability, serviceability, or function of these programs.
© Copyright IBM Corp. 2014. All rights reserved. vii

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business Machines
Corporation in the United States, other countries, or both. These and other IBM trademarked terms are
marked on their first occurrence in this information with the appropriate symbol (® or ™), indicating US
registered or common law trademarks owned by IBM at the time this information was published. Such
trademarks may also be registered or common law trademarks in other countries. A current list of IBM
trademarks is available on the Web at http://www.ibm.com/legal/copytrade.shtml

The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

CICS®
CICS Explorer®
CICSPlex®
DataPower®
DB2®
developerWorks®
HiperSockets™
IBM®

IMS™
Language Environment®
MVS™
OMEGAMON®
RACF®
Rational®
Redbooks®
Redpapers™

Redbooks (logo) ®
System z®
Tivoli®
WebSphere®
Worklight®
z/OS®
z/VM®

The following terms are trademarks of other companies:

SoftLayer, and SoftLayer device are trademarks or registered trademarks of SoftLayer, Inc., an IBM Company.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Microsoft, Windows, and the Windows logo are trademarks of Microsoft Corporation in the United States,
other countries, or both.

Java, and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or its
affiliates.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product, or service names may be trademarks or service marks of others.
viii A Software Architect’s Guide to Java Workloads in IBM CICS Transaction Server

http://www.ibm.com/legal/copytrade.shtml

IBM REDBOOKS PROMOTIONS
Find and read thousands of
IBM Redbooks publications

Search, bookmark, save and organize favorites

Get up-to-the-minute Redbooks news and announcements

Link to the latest Redbooks blogs and videos

Download
Now

Get the latest version of the Redbooks Mobile App

iO
S

Android

Place a Sponsorship Promotion in an IBM
Redbooks publication, featuring your business
or solution with a link to your web site.

Qualified IBM Business Partners may place a full page
promotion in the most popular Redbooks publications.
Imagine the power of being seen by users who download
millions of Redbooks publications each year!

®

®

Promote your business
in an IBM Redbooks
publication

ibm.com/Redbooks
About Redbooks Business Partner Programs

IBM Redbooks promotions

http://www.redbooks.ibm.com/redbooks.nsf/pages/mobileapp
https://itunes.apple.com/bw/app/ibm-redbooks/id778694354
https://play.google.com/store/apps/details?id=com.ibm.homeScreen
http://www.redbooks.ibm.com/redbooks.nsf/pages/partnerprograms?Open

THIS PAGE INTENTIONALLY LEFT BLANK

Preface

This IBM® Redbooks® publication introduces the IBM System z® New Application License
Charges (zNALC) pricing structure and provides examples of zNALC workload scenarios. It
describes the products that can be run on a zNALC logical partition (LPAR), reasons to
consider such an implementation, and covers the following topics:

� Using the IBM WebSphere® Application Server Liberty profile to host applications within
an IBM CICS® environment and how it interacts with CICS applications and resources

� Security technologies available to applications that are hosted within a WebSphere
Application Server Liberty profile in CICS

� How to implement modern presentation in CICS with a CICS Liberty Java virtual machine
(JVM) server

� How to share scenarios to develop Liberty JVM applications to gain benefits from
IBM CICS Transaction Server for z/OS® Value Unit Edition

� Considerations when using mobile devices to interact with CICS applications and explains
specific CICS technologies for connecting mobile devices by using the z/OS Value Unit
Edition

� How IBM Operational Decision Manager for z/OS runs in the transaction server to provide
decision management services for CICS COBOL and PL/I applications

� Installing the CICS Transaction Server for z/OS (CICS TS) Feature Pack for Modern Batch
to enable the IBM WebSphere batch environment to schedule and manage batch
applications in CICS

This book also covers what is commonly referred to as plain old Java objects (POJOs). The
Java virtual machine (JVM) server is a full-fledged JVM that includes support for Open
Service Gateway initiative (OSGi) bundles. It can be used to host open source Java
frameworks and does just about anything you want to do with Java on the mainframe. POJO
applications can also qualify for deployment using the Value Unit Edition. Read about how to
configure and deploy them in this companion Redbooks publication:

IBM CICS and the JVM server: Developing and Deploying Java Applications, SG24-8038

https://www.redbooks.ibm.com/redbooks.nsf/RedpieceAbstracts/sg248038.html?Open

Examples of POJOs are terminal-initiated transactions, CICS web support, web services,
requests received via IP CICS sockets, and messages coming in via IBM WebSphere MQ
messaging software.
© Copyright IBM Corp. 2014. All rights reserved. xi

https://www.redbooks.ibm.com/redbooks.nsf/RedpieceAbstracts/sg248038.html?Open

Authors

This book was produced by a team of specialists from around the world working at the
International Technical Support Organization, Raleigh Center.

Rufus Credle is a Certified Consulting IT Specialist at the IBM
International Technical Support Organization (ITSO), Raleigh
Center. In his role as project leader and information developer,
he conducts residencies and develops IBM Redbooks,
Redpapers™, and Solution Guides. The topics include network
operating systems, enterprise resource planning solutions,
voice technology, high availability, clustering solutions, web
application servers, pervasive computing, IBM and OEM
applications, WebSphere Commerce, IBM MQ, IBM CICS, IBM
System x, and IBM BladeCenter. Rufus' various positions
during his IBM career include assignments in administration
and asset management, systems engineering, sales and
marketing, and IT services. He has a BS degree in Business
Management from Saint Augustine's College and has been
employed at IBM for 34 years.

George Burgess is a Software Engineer in CICS Development
at IBM Hursley Park in the UK. Previously, he spent three years
as a subject matter expert on CICS Transaction Server on z/OS
for the Peoples Republic of China. He has 29 years of
experience as an application programmer, systems
programmer, CICS developer, and IBM Tivoli® OMEGAMON®
XE for CICS developer. His other areas of expertise include
Common Business Oriented Language (COBOL), IBM DB2®
databaes, Java, IBM MQ, IBM IMS™ database management
system, Data Language Interface (DL/1), Virtual Storage
Access Method (VSAM), JCL,
IBM z/OS, and OMEGAMON.

Paul Cooper has worked in the CICS Development
organization at IBM Hursley Park for more than15 years. In that
time, he has helped develop the Java technology in CICS, web
services in CICS, mobile support for CICS, and the CICS cloud
infrastructure.

Mark Hiscock is the Operational Decision Management
development team lead for IBM z/OS. He is based in Hursley, in
the UK. He joined IBM in 1999 and holds a first-class degree in
Computer Science from the University of Portsmouth. He has
more than 10 years experience working in mainframe
development on products such as IBM Operational Decision
Manager, MQ, CICS, DB2, WebSphere Message Broker, and
WebSphere Application Server.
xii A Software Architect’s Guide to Java Workloads in IBM CICS Transaction Server

Mark Hollands is a Software Engineer in the CICS
Development organization. He has two years of experience in
developing IBM CICS Explorer® plug-ins for several of the
CICS tools, including CICS Configuration Manager and CICS
Deployment Assistant. After graduating with a degree in
Computer Science, Mark joined IBM as a Software Developer.
He worked on WebSphere Voice Response before transferring
to CICS Tools Development.

Mitch Johnson is a Client Technical Specialist for IBM MQ,
IBM Operational Decision Manager, and CICS in Advanced
Technical Skills in the United States. He was previously a
consultant for WebSphere in IBM Software Services, where his
expertise was WebSphere Application Server on z/OS. He has
worked on five previous IBM Redbooks publications and
Redpapers that dealt primarily with connectivity to z/OS
resources from WebSphere Application Server and other
resources. His areas of expertise include CICS, DB2, IMS, MQ,
z/OS, Java, and Java Platform, Enterprise Edition connectors
and security.

Subhajit Maitra is a Senior IT Specialist and member of the
IBM North America System z WebSphere Technical Sales
team. His expertise includes IBM Operational Decision
Manager, IBM Integration Bus, and IBM MQ on System z.
Subhajit is also an IBM Global Technical Ambassador for
Central and Eastern Europe, where he helps IBM clients
implement business-critical solutions on IBM System z. His
21-year career in information technology includes roles as a
developer, designer, and architect in the healthcare, financial
services, and government industries. Subhajit previously
worked with the ITSO in creating and delivering workshops
worldwide and as a co-author of previously published
Redbooks. He holds a master's degree in computer science
from Jadavpur University, in Kolkata, India, and is an IBM
zChampion.

Geoffrey Pirie is a CICS product marketing manager with the
IBM Software Group for application and integration
middleware, at IBM Hursley Park in the United Kingdom. He
joined IBM as a developer and later moved into management of
the CICS System Test and Performance team. His experience
and growth led him to join the marketing team for CICS, where
he helps manage the CICS portfolio.
 Preface xiii

Thanks to the following people for their contributions to this project:

Tamikia Barrow, Debbie Willmschen
International Technical Support Organization, Raleigh Center

Amanda Ballard-Stuart, Staff Administration Assistant
IBM Hursley

Matthew Wilson, Ivan Hargreaves, Daniel Millwood, Michael Wang, Ian Mitchell
IBM Development
IBM Hursley

Andy Bates, Adrian Kyte
IBM Marketing and Project Management
IBM Hursley

Now you can become a published author, too

Here is an opportunity to spotlight your skills, grow your career, and become a published
author—all at the same time. Join an ITSO residency project and help write a book in your
area of expertise, while honing your experience using leading-edge technologies. Your efforts
will help to increase product acceptance and customer satisfaction, as you expand your
network of technical contacts and relationships. Residencies run from two to six weeks in
length, and you can participate either in person or as a remote resident working from your
home base.

Find out more about the residency program, browse the residency index, and apply online:

ibm.com/redbooks/residencies.html

Comments welcome

Your comments are important to us.

We want our books to be as helpful as possible. Send us your comments about this book or
other IBM Redbooks publications in one of the following ways:

� Use the online Contact us review Redbooks form:

ibm.com/redbooks

� Send your comments by email:

redbooks@us.ibm.com

Bei Chun Zhou is Software Engineer on the IBM CICS
Transaction Server for z/OS service team. He graduated from
Tsinghua University and then earned a master’s degree from
the Chinese Academy of Sciences. He has worked at IBM for
four years as a CICS L3 support representative and is now the
lead of China CICS L3 team. His expertise is mainly in the
CICS Transaction Server. He supports IBM CICS clients in
problem solving, system upgrades, health checks, performance
tuning, and new feature enablement.
xiv A Software Architect’s Guide to Java Workloads in IBM CICS Transaction Server

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html

� Mail your comments:

IBM Corporation, International Technical Support Organization
Dept. HYTD Mail Station P099
2455 South Road
Poughkeepsie, NY 12601-5400

Stay connected to IBM Redbooks

� Find us on Facebook:

http://www.facebook.com/IBMRedbooks

� Follow us on Twitter:

http://twitter.com/ibmredbooks

� Look for us on LinkedIn:

http://www.linkedin.com/groups?home=&gid=2130806

� Explore new Redbooks publications, residencies, and workshops with the IBM Redbooks
weekly newsletter:

https://www.redbooks.ibm.com/Redbooks.nsf/subscribe?OpenForm

� Stay current on recent Redbooks publications with RSS Feeds:

http://www.redbooks.ibm.com/rss.html
 Preface xv

http://www.facebook.com/IBMRedbooks
http://twitter.com/ibmredbooks
http://www.linkedin.com/groups?home=&gid=2130806
https://www.redbooks.ibm.com/Redbooks.nsf/subscribe?OpenForm
http://www.redbooks.ibm.com/rss.html

xvi A Software Architect’s Guide to Java Workloads in IBM CICS Transaction Server

Part 1 New workloads on the
mainframe

In this part, we describe mainframe workload pricing and help you understand what will
qualify for the IBM System z New Application License Charge and Value Unit Edition.

Part 1
© Copyright IBM Corp. 2014. All rights reserved. 1

2 A Software Architect’s Guide to Java Workloads in IBM CICS Transaction Server

Chapter 1. Mainframe workload pricing

This chapter introduces the IBM System z New Application License Charge (zNALC) pricing
structure. It also gives examples of zNALC workload scenarios, which are the focus of this
book. For more information, see the IBM System z Software Pricing web page:

http://www.ibm.com/systems/z/resources/swprice

This chapter covers the following topics:

� 1.1, “Advantages of the Value Unit Edition pricing model” on page 4
� 1.2, “CICS Transaction Server Value Unit Edition benefits” on page 4
� 1.3, “Business value” on page 5
� 1.4, “Why Java works on the mainframe” on page 5
� 1.5, “When and where to put Java on System z” on page 6
� 1.6, “Defying gravity” on page 7
� 1.7, “Solution overview” on page 8
� 1.8, “Value Unit Edition incentives and implementation scenarios” on page 10

1

© Copyright IBM Corp. 2014. All rights reserved. 3

http://www.ibm.com/systems/z/resources/swprice

1.1 Advantages of the Value Unit Edition pricing model

For many organizations, the ongoing pressure to manage long-term operational costs can be
a psychological barrier when considering deployment of new applications to IBM System z.
Yet System z is still one of the most capable and cost-effective platforms for running mixed
workloads, with the qualities of service on which these organizations depend. In recognition
of these ongoing pressures, IBM has introduced the Value Unit Edition (VUE) pricing model to
provide clients with greater flexibility to balance the capital and operating expenses of new
projects.

System z New Application Licence Charges (zNALC) gives organizations the opportunity to
run a new workload on System z at a reduced cost if that workload is a qualified “new
workload” application. An example of a qualified application is a Java language business
application running in IBM CICS Transaction Server for z/OS Value Unit Edition (CICS TS
VUE) or IBM WebSphere Application Server.

Running CICS Transaction Server for z/OS using the Monthly License Charge (MLC) pricing
option is normally considered an operating expense (OpEx). This is because the expenses
are charged monthly and are directly related to the CPU use for the month. However, IBM
CICS Transaction Server for z/OS Value Unit Edition is a one-time-charge license, so it is
categorized as capital expenditure (CapEx). This one-time-charge license can run in a
reduced price zNALC logical partition (LPAR). The same principle applies to other qualifying
software that is required to support the application.

CICS Transaction Server is part of a family of products that are available as a Value Unit
Editions. Other IBM software that is available as Value Unit Editions include IBM DB2 for
z/OS, IBM IMS database, IMS Transaction Manager, and IBM WebSphere MQ for z/OS.

1.2 CICS Transaction Server Value Unit Edition benefits

CICS Transaction Server Value Unit Edition (VUE) allows you to deploy new Java workloads
at a fixed cost. zNALC provides a reduced price for z/OS. For clients who have an IBM
System z Application Assist Processor (zAAP), Java workload can be transferred to the
specialty processor, further reducing the cost of running new Java workloads under CICS
Transaction Server.

CICS Transaction Server Value Unit Edition contains a version of the WebSphere Liberty
Profile at no extra charge, running in the highly scalable JVM server architecture within CICS.
A separate WebSphere Application Server license is not required to run WebSphere Liberty
Profile applications within CICS TS. Deploying new Java workload to Liberty on CICS allows
you to use many of the Liberty capabilities as well as integrating Liberty applications with the
JCICS API, providing the best of both worlds in a single managed runtime.

The IBM JVM uses the latest hardware advances in System z including features such as
Transactional Memory (for improved concurrency in multithreaded applications) and large
1MB pageable memory using flash. An IBM benchmark shows 40% improvement in Java
workloads running on zEC12 using Java7SR3 using hardware improvements compared to
z196. CICS TS V5 supports Java7SR1 or later, which enables you to use the most efficient
JVM runtime available on System z.
4 A Software Architect’s Guide to Java Workloads in IBM CICS Transaction Server

1.3 Business value

The Value Unit Edition (VUE) family of products provides a choice for how to budget for new
projects. Previously, all new projects would primarily result in an increase in operational
expenditure. Deploying to a VUE environment on a zNALC LPAR enables a proportion of the
project cost to be a capital expense. In organizations where strict budgetary controls are in
place, having the flexibility to choose between these two budgets can help to get new projects
financed and delivered.

You can deploy VUE versions of products to use new capabilities without needing to migrate
your existing installations to the latest software levels. For example, CICS TS VUE can
interoperate with an existing version of CICS TS (MLC) at a lower level, without triggering the
single-version-charging (SVC) window. Furthermore, you can start by deploying the CICS TS
Developer Trial, a free version of CICS that allows you to evaluate product capabilities, and
later upgrade it, in place, to either CICS TS VUE or CICS TS (MLC). There is no need to
uninstall and reinstall software.

1.4 Why Java works on the mainframe

The idea that Java and the mainframe are a bad pairing is outdated and inaccurate. If you still
hold the opinion that the two do not fit well together, it is time to reconsider.

Java is a language, and there are many to choose from, but not all languages get the same
investment that Java has had, particularly on the mainframe. Perhaps more importantly, Java
is also a runtime platform. Java on System z has received significant and ongoing investment
from IBM, which has built the Java virtual machine for System z from the ground up,
developed hardware that can be used by the JVM, and built core middleware technology
using Java. This makes Java on the mainframe one the world’s most optimized Java
environments.

System z is something special in itself. There is no other machine that has such a vast
heritage with such a profound effect on business, science, and people, from helping to put
man on the moon, to becoming the heart of the world’s financial system, or to buying
cosmetics with a mobile phone from the comfort of a chair. The mainframe has continued to
evolve to incorporate the latest advances in technology to deliver the most capable platform
the IT industry has.

It's not surprising to find System z at the heart of the 24x7 always-on world that we have
come to expect, processing millions of business transactions every day. IBM estimates that
80% of the world’s corporate data resides or originates on the mainframe. So you might say
that it represents the “center of gravity” for business applications and data.

Java’s popularity as a language for enterprise systems has grown steadily. Despite now being
around 20 years old, eWeek ranked Java number 1 in its Top 10 Programming Languages for
Job Seekers in 2014.1 It is a well-structured language, suitable for writing clean and robust
code, where the developer can focus on the problem, take advantage of the language
features, and write something that a colleague will understand decades later, using the same
tools that are used for writing code on distributed platforms.

Java also benefits from being the language of choice for many universities around the world,
where it forms the basis of computer science and software engineering courses. Graduates

1 Darryl K. Taft, “Top 10 Programming Languages for Job Seekers in 2014,” eWeek, February 2014
http://www.eweek.com/developer/slideshows/top-10-programming-languages-for-job-seekers-in-2014.html
Chapter 1. Mainframe workload pricing 5

http://www.eweek.com/developer/slideshows/top-10-programming-languages-for-job-seekers-in-2014.html/
http://www.eweek.com/developer/slideshows/top-10-programming-languages-for-job-seekers-in-2014.html
http://www.eweek.com/developer/slideshows/top-10-programming-languages-for-job-seekers-in-2014.html
http://www.eweek.com/developer/slideshows/top-10-programming-languages-for-job-seekers-in-2014.html
http://www.eweek.com/developer/slideshows/top-10-programming-languages-for-job-seekers-in-2014.html

understand it, have been trained to use it, and know its strengths. Java has an established
ecosystem, which means it won’t be going out of fashion any time soon. Consequently, there
are a huge number of open source projects that provide frameworks and services for all kinds
of tasks. The number of Java programmers that exist exceeds nine million.

Plus, it performs. There might be people who can write tight assembler code to perform a very
specific function faster than the equivalent COBOL or Java, but who can maintain it and for
how long? The IBM Just in Time (JIT) compiler progressively optimizes Java code at runtime.
Although our hypothetical assembler guru might be able to do a good job in a specific case,
the JIT compiler considers all of it and optimizes code for the hardware on which it’s running.
As IBM invests in hardware improvements on System z, it enhances the JIT compiler to take
advantage of them. The result is continued performance improvements for Java applications
as IBM updates the JIT compiler to produce more efficient code at runtime.

Some might say that Java and the mainframe didn’t get off to the best start, and it is certainly
true that some people formed an opinion in the early years that the two were not suited to
each other. You can still find these opinions in old blog posts and forums on the Internet, but
they do not reflect the current state of Java on the mainframe.

It is not entirely surprising that a fledgling technology, as Java obviously was when it first
came to the mainframe, did not perform as well as the longstanding applications that it was
compared to, which were written in COBOL. Those existing applications had received years
of progressive refinement and refactoring, perhaps even decades of it, so the comparison
was unfavorable and some people formed a negative opinion by focusing on short-term
comparisons.

Today's Java on System z runs in the IBM 64-bit JVM, uses features such as hardware
transactional memory, large memory pages, and hardware instructions that go back to the
IBM z990 that was introduced in 2003. It has more than a decade of investment and
refinement behind it. The JVM and JIT have both been enhanced in step with Java
specification developments, and the hardware has had capabilities added specifically to
enhance Java workloads. IBM also introduced the z Application Assist Processor (zAAP) that
runs Java workloads on dedicated processors, significantly reducing the long-term operating
cost of Java workload on the mainframe.

Comparing Java today to the Java of 10 years ago is like comparing Formula 1 racing cars
that are a decade apart and asserting that the technology has not changed much in the
passing years. It's not really a comparison that is worth making because they are simply not
the same thing.

1.5 When and where to put Java on System z

Deciding whether System z is the right place to put new Java applications has not always
been the simple decision that people would like it to be. Depending upon whom you ask, the
answer can be anything from “Put everything on z” to “never” to “it depends,” with the last
answer typically accompanied by a long technical discussion of the pros and cons. None of
these answers are particularly helpful. The first leaves you wondering whether the person
really understands why you have asked the question, the next leaves you wondering whether
technology alone can provide the answer, and the last often feels like a passionate and
unsubstantiated opinion.

Today, if you are asking yourself where the best place to deploy a new Java application is, you
should probably first ask yourself, “Where is the center of gravity of the existing applications
and data that this new Java application will interact with?”
6 A Software Architect’s Guide to Java Workloads in IBM CICS Transaction Server

You might wonder what we mean when we use “center of gravity” in the context of technology.
Imagine a typical IT environment where there are lots of disparate systems that need to
interact with each other. Now consider what the typical pattern of interactions will be between
the proposed new Java application and those existing systems, applications, and data. The
center of gravity is wherever the greatest concentration of interactions is. Positioning the new
Java application on or near the center of gravity minimizes the architectural complexity of the
solution, which in turn has a positive impact on things such as response time, maintenance
costs, and resiliency.

Consider a simple example. Imagine that you are planning to build and deploy a new Java
application. The new application will provide some entirely new capabilities but will need to
interact with the existing business services hosted in CICS that modify data hosted on the
mainframe. These services provide the business function that you need and they also
embody preferred practices and comply with your audit and governance policies. So being
able to reuse them is essential.

By applying the center of gravity principle, you can quickly assess the level of interaction that
your new application will have with the existing mainframe solution. In this example, the
center of gravity is clearly in CICS on the mainframe. So what Java environment can you
expect to find there? CICS Transaction Server (TS) version 5 supports the IBM 64-bit JVM, so
it provides a multithreaded JVM server environment directly in CICS TS. If your application
could benefit from some of the capabilities of the IBM WebSphere Application Server Liberty
Profile, for example a presentation layer built using JavaServer Pages (JSPs) and servlets,
you will find that the Liberty Profile is embedded in the CICS JVM server and packaged
without charge as part of CICS TS V5.

Another example is a new Java application that interacts with one or more non-mainframe
systems, such as a distributed IBM DB2 database, perhaps in combination with a third-party
packaged application that us running in an IBM SoftLayer® public cloud. If there is little or no
requirement for your new Java application to have access to applications or data on the
mainframe, the center of gravity for that application is clearly not on the mainframe. In this
example, the question to ask might be whether the center of gravity is nearer the distributed
DB2 database or the cloud-based third-party application. Either way, WebSphere Application
Server has deployment options in both of these environments.

The center of gravity principle works because no matter where the center of gravity is, there is
an enterprise-grade Java environment there to accompany it. The goal of the center of gravity
principle is not to define an absolute answer, because there might be more considerations
that steer you in another direction. The goal is to consider options that are congruent with
past business decisions and that recognize the broad range of Java capabilities available to
you, regardless of their locations.

1.6 Defying gravity

Although the center of gravity principle helps to keep your decision-making process
grounded, there are some specific cases where following the principle without question might
not be optimal. The most likely case is in a mixed platform environment, where both System z
and distributed servers co-exist. In mixed platform environments, the center of gravity might
appear to be in the distributed server environment, even if it has interactions with System z
based services. So the logical conclusion would be to locate a new Java application
somewhere in the distributed environment. Is this the right answer?

To be clear, we are not suggesting that this is a wrong answer, but it is worth stopping to
consider the economics of growing a distributed server environment, particularly when
Chapter 1. Mainframe workload pricing 7

System z is also present. The case for consolidation onto System z, in particular Linux for
System z, is strong, because it breaks the economic pattern of incremental costs associated
with each new distributed server.

Linux on System z virtualization enables new instances to be added to the environment
quickly and easily, without needing to worry about floor space, power, cooling, cabling,
physical maintenance, and much of the cost associated with the introduction of a physical
device. Moreover, if your organization is motivated by the economics of a cloud environment
but concerned about migrating sensitive data to the cloud, the combination of Linux on
System z and z/OS can form the basis of an efficient private, hybrid cloud environment.

The economic argument extends further. In the same way that System z provides zAAP
processors dedicated to running Java workloads, it also provides the Integrated Facility for
Linux (IFL) processors. These are dedicated to running Linux on System z, which provides
cost and scalability benefits. Consolidation onto System z also offers advantages from the
collocation of applications and data, reducing network latency by taking advantage of System
z IBM HiperSockets™, and simplifying the application architecture. The IBM z/VM® operating
system provides an efficient virtualization environment that enables you to reach nearly 100%
processor use, even in mixed workload environments. This reduces the cost per transaction.

Managing costs, particularly operational expenses, is a top priority for all organizations.
Consolidating distributed server environments can directly reduce operational expenses, but
if the economics for consolidation don't apply to your environment (perhaps you have already
consolidated), there are still options to consider for managing operational expenses on
System z when deploying new Java applications to the platform. These options, described
throughout the remainder of this book, explain how CICS Transaction Server Value Unit
Edition can be used to deploy new Java workloads, using a one-time-charge pricing model.

1.7 Solution overview

This IBM Redbooks publication provides a set of technology-lead scenarios that demonstrate
how CICS Transaction Server Value Unit Edition can be deployed to address some typical
business challenges, ranging from mobile enablement of existing applications to the
development of a modern, hybrid batch environment. All of these examples share two
common traits: They are new workload scenarios and they can be deployed to CICS TS VUE.

1.7.1 Using the Liberty profile to modernize interfaces

We begin with a review of the WebSphere Application Server Liberty Profile (Liberty), which is
packaged with CICS Transaction Server, and consider how Liberty can be used to modernize
existing interface technologies. Liberty provides capabilities such as JSPs and servlets, which
offer developers familiar who are with web technologies the capability to build rich web-based
interfaces that interact with existing CICS applications and services. For many clients, these
backend applications represent the cumulative investment in business process, governance,
and audit requirements, and they represent core business value in the form of intellectual
property and competitive advantage. For many, these are irreplaceable, so providing new
methods to interact with these CICS TS services enables businesses to continue to benefit
from their investments yet do so using modern interfaces, languages, and capabilities that are
available in the Liberty profile.
8 A Software Architect’s Guide to Java Workloads in IBM CICS Transaction Server

The following chapters explain more about the Liberty profile:

� Chapter 2, “Introduction to the Liberty JVM server” on page 15, describes configuring
Liberty in CICS.

� Chapter 3, “Using CICS Liberty JVM servers to develop application interfaces” on
page 25, covers approaches to modernizing interfaces.

� Chapter 4, “Porting JEE applications to a CICS Liberty JVM server” on page 33, describes
consolidating Liberty applications in CICS TS.

1.7.2 Optimizing mobile workloads to connect with customers and employees

Part 3, “Mobile devices” on page 45, addresses the growth of mobile technologies that
require new mobile workloads. This has been well described in the press. For many, it is the
primary driver of growth and new development. Building mobile solutions requires so much
more than simply building the mobile application, because a mobile application must meet the
expectations of users who live in the always-on, always current, world of connected mobile
devices.

Business process optimization for both business-to-consumer (B2C) and
business-to-employee (B2E) are dominant factors in the next generation of mobile application
development as business moves beyond simple interaction using a mobile device into the
realm of the integrated mobile channel. In both of these cases, the value of the mobile
application is not simply that it's on a mobile device but that it is integrated with the corporate
systems, data, and processes that the business has built to offer competitive services to its
customers. When these systems reside on the mainframe, it is natural to want to use them.

The Mobile section explains how CICS TS can provide mobile enablement of existing
backend services. It begins by considering the capabilities offered by Liberty, such as
JAX-WS and JAX-RS for XML web services and RESTful web services, respectively, before
considering z/OS Connect and later options for connecting to Java applications by using the
data transformation services of CICS.

1.7.3 Building timely, scalable decisions into software

Part 4, “IBM Operational Decision Manager” on page 71, is also relevant to our always-on,
always-connected world, where it becomes increasingly important to make the right decision
at the right time. Essential to successful decision management is being able to make
decisions in a timely fashion and to locate the decision-making process close to the systems
that are dependent upon them. In times gone by, the decision process could be a human task,
but these days, efficient decision-making process are codified and embedded in software
components that are accessible from across the enterprise. IBM Operational Decision
Manager provides the capabilities necessary to codify, manage, update, and deploy
decisions, and it can be hosted in CICS TS. This enables you to build a highly scalable and
robust decision management solution that is located with critical enterprise workloads.

For more information about decision management and the architectural options for deploying
Operational Decision Manager, read Chapter 8, “Decision management integrated in IBM
CICS Transaction Server” on page 73. For details about deploying it to CICS TS, see
Chapter 9, “Implementing decision management in CICS TS” on page 85.
Chapter 1. Mainframe workload pricing 9

1.7.4 Updating batch processing

The last section, Part 5, “Modern Batch feature” on page 95, covers modern batch
processing. It explains how you can use new technology to reduce the size of your batch
window and transform your batch processing and OLTP workloads to make them more
cooperative. The traditional batch window, where online systems are shut down, is shrinking
as the need for always-on processing increases. Yet the two approaches to data processing
are, in their traditional forms, mutually exclusive. By using WebSphere Java Batch and the
CICS Feature Pack for Modern Batch, you can build a hybrid batch environment that allows
for both methods to operate together, where online applications remain online longer, and
new or existing batch workloads co-exist and use some of the capabilities that have
previously been unavailable to use for batch processing. By using the WebSphere and CICS
combination, you have an alternative way of managing and pricing batch workloads.

Chapter 10, “Modern batch workloads” on page 97 reviews batch processing considerations
and the inherent benefits that can be gained by building a hybrid batch environment.
Chapter 11, “Modern batch use scenario” on page 113, provides an example of how to build
and deploy a modern batch application into CICS TS VUE.

1.8 Value Unit Edition incentives and implementation scenarios

Section 1.5, “When and where to put Java on System z” on page 6, described a range of
technical capabilities that can be deployed to CICS TS VUE. This list is not exhaustive, and
there are many other use scenarios. However, there are a few common reasons that an
organization considers deploying new workloads to VUE.

1.8.1 Do more sooner at less cost

For most businesses, a large proportion of what they are doing with their IT budgets can be
categorized as solutions that either get things done sooner or cost less. CICS TS VUE
provides both, because it reduces the cost of new workloads and provides capabilities that
enable you to get things done faster.

For those who are focused on cutting costs, one obvious consideration is consolidation, either
of the physical servers or the software architecture components. Both carry a cost. As an
example, consider an organization that has progressively developed an application in CICS.
Such an organization might have initially developed a terminal-based application, eventually
replacing that with a fat-client solution running on distributed servers, perhaps also building
some applications that use web technology hosted on web servers and interact with CICS
applications.

Note: IBM CICS Transaction Server for z/OS Value Unit Edition runs on a zNALC enabled
LPAR on z/OS. To deploy it to CICS TS VUE, a workload must meet simple criteria to
demonstrate that it is a “net new” Java workload, in accordance with zNALC pricing
conditions or that it is a qualifying application. Both are described under the zNALC tab of
the IBM System z Software Pricing web page:

http://www.ibm.com/systems/z/resources/swprice/mlc/znalc.html
10 A Software Architect’s Guide to Java Workloads in IBM CICS Transaction Server

http://www.ibm.com/systems/z/resources/swprice/mlc/znalc.html

The concept of consolidation can be applied in many ways to this example, bringing various
benefits depending on exactly what it being consolidated. For example:

� Consolidation to reduce architectural complexity and, therefore, maintenance cost

� Consolidation to reduce the operational expense of managing large data centers

� Consolidation to reduce network latency and improve response times

� Consolidation of “legacy” or existing interface layers to increase productivity and introduce
new interactions

Before the introduction of CICS TS VUE, these examples, although valid, might have involved
challenges when considering the financial factors involved. This no longer has to be the case,
because VUE changes the pricing and allows a fixed price for such projects. By using VUE, a
client in the circumstances described would be able to benefit from all of these consolidation
options. Therefore, they could minimize architectural complexity, remove unnecessary
hardware, improve the response time of applications, and use new languages and technology
to create rich mobile and web applications.

1.8.2 Do things faster

The second type of IT budget spending is directed toward increasing service agility or doing
things faster. The latest features of CICS TS, particularly those offered by the inclusion of the
Liberty profile and the mobile capabilities of CICS TS, are well suited to organizations that
want to build dynamic interactions that use the applications and services in existing CICS
applications. VUE enables you to consider building these new workloads by using all of the
features of CICS, integrating with existing CICS applications and services that are already in
production, yet doing so with a degree of separation and financial security. You can price the
project to use capital budgets and rapidly deploy new applications that use the existing skill
base of development and operations staff.

Consider another client, again with an investment in CICS applications, who wants to build a
“next generation” mobile application to replace their existing mobile solution. In this example,
the client has a broad range of services hosted in CICS and wants to provide a simple
interface to these services that doesn't require additional servers in the data center, is built by
using popular programming models for mobile development, and provides a lightweight
interface for operations staff to track and monitor key performance metrics for the application.
For this client, improved service agility might include the following elements and benefits:

� RESTful APIs for accessing services from mobile devices, making integration quick and
easy for application development

� Java servlets and JSPs to create web-based performance metrics viewable in a web
browser, making the deployment of interface updates quicker and centrally managed

� A structured approach to packaging and managing application updates so that operations
staff can be confident when deploying new changes, speeding up deployment times

In this example, before CICS TS VUE, a client who saw value in the Liberty, mobile, and
applications packaging capabilities of CICS would have needed to migrate their existing CICS
installation to the latest level of CICS TS to gain access to these features. But using CICS TS
VUE, the client can deploy the latest version of CICS to a separate LPAR, yet connect to all of
the applications and services in their existing CICS environment and use the latest CICS
capabilities. This offers all of the capabilities of the latest technology and enables the cost of
the project to be allocated from the capital budget.
Chapter 1. Mainframe workload pricing 11

Although these two scenarios are somewhat trivial, they demonstrate that VUE is not simply
about changing the price of a project from an operation expense to a capital expense, but that
VUE offers a complete CICS solution to many different business problems.
12 A Software Architect’s Guide to Java Workloads in IBM CICS Transaction Server

Part 2 Liberty profile and CICS

This part introduces the concepts and features of the IBM WebSphere Application Server
Liberty profile within a CICS Transaction Server for an IBM z/OS environment. It describes
two key benefits of the CICS Liberty environment, including the modernization of the
presentation layer of CICS applications and how consolidation and collocation of presentation
and data can be beneficial in a CICS infrastructure.

This section includes the following chapters:

� Chapter 2, “Introduction to the Liberty JVM server” on page 15
� Chapter 3, “Using CICS Liberty JVM servers to develop application interfaces” on page 25
� Chapter 4, “Porting JEE applications to a CICS Liberty JVM server” on page 33

Part 2
© Copyright IBM Corp. 2014. All rights reserved. 13

14 A Software Architect’s Guide to Java Workloads in IBM CICS Transaction Server

Chapter 2. Introduction to the Liberty JVM
server

This chapter describes the IBM WebSphere Application Server Liberty profile, its ability to
host applications within a CICS Transaction Server (TS) environment, and how it interacts
with CICS TS applications and resources. It also describes the security technologies that are
available to applications hosted within a Liberty profile in CICS TS.

This chapter covers the following topics:

� 2.1, “Evolving application servers” on page 16
� 2.2, “Advantages” on page 16
� 2.3, “Strengths” on page 17
� 2.4, “Liberty in the CICS Transaction Server” on page 18
� 2.5, “Security” on page 20

2

© Copyright IBM Corp. 2014. All rights reserved. 15

2.1 Evolving application servers

As software development methods develop over time to deliver more functions to customers
quickly and reliably, being able to incorporate new technologies into existing environments
has never been more important. The ability for an application server like CICS TS to support
these continuously changing demands is essential to deliver these new services. The
challenges on application servers include:

� The ability to rapidly deploy (and redeploy) application artifacts as part of a DevOps
continuous integration process.

� Software should be modular and easily assembled. This allows applications to be rapidly
composed from existing modules and easily deployed into the runtime environment.

� Modern application patterns, such as RESTful web services and responsive UI, are
rapidly becoming more popular. Application servers must be able to adopt these new
programming models.

The WebSphere Application Server Liberty profile (Liberty) is lightweight and easy to install. It
is used to develop and deploy applications. Therefore, it provides a convenient and capable
platform for developing and testing your web and OSGi applications. Liberty is built by using
OSGi technology and concepts. The fit-for-purpose nature of the runtime relies on the
dynamic behavior inherent in the OSGi framework and service registry. As applications
(bundles) are installed or uninstalled from the framework, their services are automatically
added or removed from the service registry. The result is a dynamic, composable run time
that can be provisioned with only what your application requires and responds dynamically to
configuration changes as your application evolves.

CICS Transaction Server for z/OS (CICS TS) V5.1 added support for Liberty to run within a
Java virtual machine (JVM) server in CICS TS. This has been extended in CICS Transaction
Server for z/OS V5.2, which added more supported features for web applications running in a
Liberty JVM server within CICS TS.

2.2 Advantages

Liberty is a simple, lightweight development and application runtime environment that offers
these benefits:

� Simple to configure: Configuration is read from a single XML file (server.xml). CICS TS
extends this simplicity further by adding the ability to automatically generate this XML file.

� Dynamic and flexible: The Liberty profile server runtime loads only what your application
needs and constructs the run time in response to configuration changes.

� Extensible: The Liberty system programming interfaces (SPIs) provide support for user
and product extensions that can use the SPIs to extend the run time. An example of this is
the additional features that CICS TS provides in the CICS Liberty JVM server (see 2.4,
“Liberty in the CICS Transaction Server” on page 18).

2.2.1 Liberty and the CICS Transaction Server for z/OS Value Unit Edition

In addition to the technical possibilities that Liberty within CICS makes available, applications
that are written and run within CICS Liberty qualify as new Java workloads and are eligible to
run within a CICS Transaction Server for z/OS Value Unit Edition region on a zNALC LPAR.
16 A Software Architect’s Guide to Java Workloads in IBM CICS Transaction Server

New Java-based features can be developed within Liberty and can be self-contained. For
example, they can interact with IBM MQ Value Unit Edition or IBM DB2 Value Unit Edition also
running on the zNALC LPAR. Another possibility is to use the Java class library for CICS
(JCICS) to link to an existing application running in a standard CICS Transaction Server for
z/OS region on a standard LPAR.

2.3 Strengths

Liberty offers great advantages when used as both a development run time and production
run time within CICS TS. Liberty is both lightweight and capable, particularly when
considering the ability of third-party products to extend and enhance the available features.
Liberty offers great advantages when used as both a development and production runtime
environment in CICS TS.

2.3.1 Simple configuration

The server configuration, from the server administrator’s perspective, is only a single
server.xml file that contains all necessary information. The configuration file for
IBM WebSphere Application Server Liberty Profile for z/OS V8.5.5 (the version included in
CICS TS V5) has many optional parameters that you can use for specific scenarios. They are
listed in “Liberty features” in the CICS Transaction Server section of the IBM Knowledge
Center:

http://ibm.co/1zgtbPv

2.3.2 Runtime composition with features and services

The composable nature of Liberty is based on the concept of features. A feature is a function.
Features can overlap, and they can include other features.

CICS Liberty JVM server consists of a JVM server that hosts the Liberty kernel and several
optional features. The feature code and most of the kernel code run as OSGi bundles within
an OSGi framework. Features provide the programming models and services required by
applications. You can choose which optional features should be enabled according to your
application requirements.

2.3.3 Developer focus

With Liberty, you can do rapid development and deployment to meet with modern
development trends. Liberty offers the following advantages for developers:

� Fast and no-cost download for developer’s workstation

Liberty profile server is fast and no cost for developer workstation use. It can be
downloaded and installed from Eclipse.org or WASdev.net.

Note: Only one CICS Liberty JVM server can run per CICS region with security enabled. If
multiple Liberty profile servers need to run within a single CICS region, security must be
disabled within the JVM profile for the JVM server. By default, security is enabled, so if the
required flag is not set within the JVM profile, only one CICS Liberty JVM server will start.
Chapter 2. Introduction to the Liberty JVM server 17

http://ibm.co/1zgtbPv

� Rapid development and deployment

You deploy an application in Liberty profile server either by dropping the application into
server’s drop-ins directory or by adding an application entry to the server configuration
(server.xml) file.

In addition to this, within CICS Liberty JVM server, you can package an application, for
example an enterprise bundle archive (EBA) in a CICS TS bundle, and deploy this bundle
within CICS TS. This is the suggested deployment method for applications in CICS Liberty
JVM server.

� Easy extensibility for custom features and third-party components

Liberty supports direct extension of the runtime environment using product extensions. A
product extension allows custom content to be added to a Liberty installation in a way that
avoids conflicts with the base content of the product and with other product extensions.

2.4 Liberty in the CICS Transaction Server

As previously mentioned, CICS Transaction Server (TS) runs Liberty within a CICS TS Java
virtual machine (JVM) server. Figure 2-1 shows the basic architecture of how a Liberty profile
server is hosted within a CICS TS region.

Figure 2-1 Architecture of Liberty in a CICS TS JVM server

As Figure 2-1 illustrates, the Liberty profile server is hosted in a CICS TS JVM server that is
defined in a JVM profile. This example shows how a CICS TS bundle containing an EBA is
placed within CICS TS and then installed in the Liberty environment. This EBA, which
contains a web application, is then able to access CICS TS resources, for example to IBM
DB2 or VSAM data sets or to other CICS TS COBOL applications.

JVMServer

CICS

Liberty

Web App EBA

OSGi Bundle

Web client
HTTP Request

HTTP Response
Web client URIMAP Tran ID

server.xml

JVMProfile

COBOL

DB2
VSAM

InstallEBA

CICS
Bundle
18 A Software Architect’s Guide to Java Workloads in IBM CICS Transaction Server

This example demonstrates using a URIMAP as an entry point into CICS Liberty JVM server
from a web client, which allows context switching of transaction ID or user ID. Liberty listens
on a port and handles HTTP traffic, with the ability to define transport security (see 2.5.2,
“Security overview” on page 21). If context switching is not required, a web client can simply
connect directly to Liberty.

Figure 2-1 on page 18 also shows that the server.xml file that defines the configuration of the
CICS Liberty JVM server is also available, although this can be automatically generated by
CICS TS. Security aspects of this architecture are described later in this chapter.

CICS TS TS V5.2 supports a subset of the total features of the full Liberty profile. These
supported features include, but are not limited to the following:

� JavaServer Faces (JSF) 2.0
� JavaServer Pages (JSP) 2.2
� Java Servlet 3.0
� Java API for RESTful Web Services (JAX-RS) 1.1
� Java API for XML Web Services (JAX-WS) 2.2
� JavaScript Object Notation (JSON4J) 1.0
� Secure Socket Layer (SSL) 1.0
� Web Application Bundles (WAB) 1.0
� Java Database Connectivity (JDBC) 4.0

You can find a complete list of supported Liberty features in the CICS section of the IBM
Knowledge Center:

http://ibm.co/1yD5Ed6

CICS Liberty JVM server includes all features of the full Liberty profile (in CICS TS V5.2, this
is the WebSphere Application Server Liberty profile for z/OS V8.5.5.1). However, the features
that appear in the IBM Knowledge Center are a subset that are currently supported. You may
choose to include other features in your applications, but this is not supported.

In addition to the Liberty features supported in CICS TS, the following are also provided:

� CICS TS Core (cicsts:core-1.0)

Provides core CICS TS features and Java Transaction API (JTA) 1.0

� CICS TS JDBC (cicsts:jdbc-1.0)

Provides support for applications to access a local CICS TS DB2 database using JDBC.

� CICS Liberty JVM server security (cicsts:security-1.0)

Provides integration of Liberty security with CICS TS security, including propagation of
thread identity. This feature includes the zosSecurity-1.0 feature.

2.4.1 Integration with CICS TS Transaction Server for z/OS

The two subsequent chapters in this part will outline the advantages of web applications
running in a Liberty JVM server in a CICS TS environment. The focus is to allow new
applications, whether they be new presentation layers to interact with current CICS TS
applications, or applications that will use resources managed by CICS TS, to benefit from
collocation with the CICS TS environment. Both use cases focus on the ease of creating new
applications that can integrate with CICS TS.
Chapter 2. Introduction to the Liberty JVM server 19

http://ibm.co/1yD5Ed6

The two main ways to interact with CICS TS are to call an existing application, for example a
CICS COBOL application running on an existing non-zNALC LPAR, or new applications, to
take advantage of the JCICS API to call CICS TS functions. There are advantages to each
approach and the choice depends mainly on what you are trying to achieve. If the main
objective is to modernize your application presentation layer, for example implementing a
Java API for RESTful Web Services (JAX-RS) interface allowing interaction with mobile
applications, the appropriate choice maybe to link to existing applications. Similarly, if a new
application is being developed from scratch, you can implement all functions from Java within
Liberty. This new application, as well as calling the JCICS API directly to access resources
could also call existing applications hosted on another LPAR.

Before these options are explored further in the rest of this part, the rest of this chapter will
outline what security options are available within CICS Liberty JVM server and some security
considerations that are important to highlight.

2.5 Security

This section will provide an introduction to the security features that are available for CICS
Liberty JVM server applications.

The security features mentioned below may, and probably will, form part of a wider security
infrastructure. It is likely that further levels of security will be required for external users to
access applications hosted in CICS Liberty JVM server, for example integrating with IBM
MobileFirst Platform Foundation. This chapter covers only the security features specific to
CICS Liberty JVM server applications. Also see 5.5, “IBM MobileFirst Platform Foundation
and CICS TS” on page 54.

2.5.1 Introduction to security with Liberty in CICS TS

CICS Liberty JVM server includes appSecurity-2.0, which enables security for web
applications when the servlet-3.0 feature is present. This complements SSL support (through
the ssl-1.0 feature), which enables SSL (including TLS) connections using HTTPS (see 2.5.2,
“Security overview” on page 21).

For CICS TS specific security options, CICS TS has an additional feature, cicsts:security-1.0,
which has integrated zosSecurity-1.0 features with CICS TS security options, for example
propagation of user identity. To use the cicsts:security-1.0 feature, the angel process that is
available in CICS TS TS V5.2 must be running. This is used for accessing z/OS authorized
services and can use SAF security frameworks. The angel process is the suggested
authentication and authorization method for CICS Liberty JVM server applications. See 2.5.3,
“The Liberty server angel process” on page 22 for more details on the angel process.

Furthermore, CICS Transaction Server for z/OS V5.2 includes improved performance through
using the Liberty authentication cache. When a user is authenticated a new Subject object is
created storing all authorization information, including roles. This Subject object is stored in
the Liberty authentication cache, with a configurable cache expiry time, preventing multiple
authentication and authorization requests for the same user.

Note: While it is possible for an application hosted in CICS Liberty to link to a CICS
COBOL, or other type of application in CICS, the ability to link to web applications running
in a Liberty JVM server is not supported in CICS TS V5.2. If this is required, a CICS
COBOL application could make an HTTP call to web applications running in a Liberty JVM
server.
20 A Software Architect’s Guide to Java Workloads in IBM CICS Transaction Server

2.5.2 Security overview

Before proceeding to read about the security options that are available in Liberty in CICS TS,
be sure to review the following key terms that are essential for understanding security:

� Transport (communication)

Transport, or communication, refers to the mechanism that is used for data to travel
between two places, for example from a client (for example a web browser on a computer)
to a server (for example an application in Liberty running within CICS TS). When referred
to in this chapter we are concerned with how to secure the data that is sent between two
sources.

Communications in CICS Liberty JVM server are secured with the Secure Sockets Layer
(SSL) protocol. The SSL protocol provides transport layer security including authenticity,
data signing, and data encryption to ensure a secure connection between a client and
server. SSL in CICS Liberty JVM server includes TLS v1.2 support required for some
security standards and the protocol used can be configured in server.xml, within the
<ssl> element using the sslProtocol attribute.

You can configure a CICS Liberty JVM server JVM server to use SSL for data encryption,
and optionally authenticate with the server using a client certificate. Client certificates can
be stored in a Java keystore or in a SAF key ring.

� Authentication

Authentication confirms that an entity (for example a user) that is attempting to access a
resource (for example an application hosted in Liberty) is a valid entity. Typically, this entity
will provide a username and password when attempting to gain access. This username
and password, or possibly a client certificate, is used to authenticate the entity.

CICS Liberty JVM server includes many different options to aid in authentication. For an
introduction on Liberty authentication visit this website:

http://www.ibm.com/support/knowledgecenter/SSD28V_8.5.5/com.ibm.websphere.wlp.c
ore.doc/ae/cwlp_authentication.html

CICS Liberty JVM server supports several of the authentication options described on that
web page, with some additions. The basic Liberty authentication features supported in
CICS Liberty JVM server are:

– SSL client authentication
– Form logon
– Lightweight Third-Party Authentication
– Custom user registry
– Trust Association Interceptor

In addition, the angel process described in 2.5.3, “The Liberty server angel process” on
page 22 allows authentication using z/OS security services (SAF) is required for
applications that interact with other CICS TS processes and are contained within CICS TS
bundles.

� Authorization

Authorization determines whether a given entity has been granted the correct privileges in
order to access a resource. This can be used, for example, in protecting certain areas of a
website that may only be available to certain authorized users.

For an introduction on Liberty authorization, visit this website:

http://www.ibm.com/support/knowledgecenter/SSD28V_8.5.5/com.ibm.websphere.wlp.c
ore.doc/ae/cwlp_authorization.html
Chapter 2. Introduction to the Liberty JVM server 21

http://www.ibm.com/support/knowledgecenter/SSD28V_8.5.5/com.ibm.websphere.wlp.core.doc/ae/cwlp_authentication.html
http://www.ibm.com/support/knowledgecenter/SSD28V_8.5.5/com.ibm.websphere.wlp.core.doc/ae/cwlp_authorization.html
http://www.ibm.com/support/knowledgecenter/SSD28V_8.5.5/com.ibm.websphere.wlp.core.doc/ae/cwlp_authorization.html

In addition to the <application-bnd> configuration options available in Liberty, CICS Liberty
JVM server includes the following addition authorization options:

– Roles (defined as SAF EJBROLE) - described in 2.5.4, “SAF roles” on page 23
– The angel process authorization - described in 2.5.3, “The Liberty server angel

process” on page 22
– ThreadIdentityService (can push Subject credential onto CICS TS task)

� Role

Typically, authorization is aided by the use of roles. An entity can be assigned one or more
roles and then a resource can be authorized to be used by a role. If the entity is a member
of a role, and a role is authorized to access a resource, access is granted to the entity.

� Subject

A subject is a representation of a given entity, for example, as mentioned before, a user.
When a user is authenticated, their authorization information (for example Role
membership) is retrieved and stored in a Subject object within Liberty authentication
cache. Any subsequent authentications will result in this Subject object being retrieved
from the cache, improving performance. The Liberty authentication cache has a
configurable expiry time for the Subject object, with a default of ten minutes.

2.5.3 The Liberty server angel process

As described in 2.5.1, “Introduction to security with Liberty in CICS TS” on page 20, CICS
Transaction Server for z/OS V5.2 added support for the angel authentication and
authorization process to CICS Liberty JVM server. It is now the default for authentication and
authorization in CICS Liberty JVM server.

The angel process is lightweight and does very little CPU-consuming work after establishing
control blocks. Only one angel process is required per z/OS operating system image (logical
partition, LPAR). This process has no configuration files and uses no TCP/IP ports.

By deafult, the angel process uses the System Authorization Facility (SAF) user registry for all
authentication requests if the CICS Liberty JVM server security feature is included. This
allows a Liberty-based application hosted in CICS TS and other CICS TS processes that are
linked to from CICS Liberty to use the same user identity.
22 A Software Architect’s Guide to Java Workloads in IBM CICS Transaction Server

Figure 2-2 shows how authentication and authorization requests are routed through the angel
process if the CICS TS security feature is present.

Figure 2-2 Process diagram for authentication and authorization with the angel process

Figure 2-2 shows a web client connecting to a Liberty profile server running within CICS and
requesting access to a resource. The CICS TS security feature (cicsts:secuity-1.0) has been
configured in the Liberty profile server. When the web client requests access to the resource,
the request is routed through the angel process onto SAF, where the user credentials are
authenticated and checked against the requested resource. The resource access could be
controlled by using roles. The user must be part of the role to be granted access. After the
user is authenticated and authorized, the response to the authorization request is passed
back to Liberty. If that is successful, the resource is returned to the web client.

For more information about how to configure CICS Liberty JVM server with the angel process,
see “The Liberty server angel process” in the IBM Knowledge Center:

http://ibm.co/12nSggY

2.5.4 SAF roles

When you are using the CICS Liberty JVM server security feature, you can include a
configuration element, <safAuthorization>, in the server.xml file to enable the use of SAF
roles (EJBROLE). If this is present any roles defined in server.xml are ignored and role
membership is defined and granted using SAF roles. An EJBROLE can be defined using SAF
and then membership of that role is granted to users defined in the SAF registry, allowing
access and permissions to SAF authorized resources for example CICS TS bundles
containing CICS Liberty JVM server applications.

For more information about how to configure roles within CICS Liberty JVM server, see “JEE
application role security” in the IBM Knowledge Center:

http://ibm.co/1HXlPGy

z/OS

CICS Angel

JVM server

Liberty

CICS TS Security

Resource SAF

User Role

Web client
Chapter 2. Introduction to the Liberty JVM server 23

http://ibm.co/12nSggY
http://ibm.co/1HXlPGy

Note: The chapters that follow describe the main scenarios for creating new applications
or migrating existing ones to CICS Liberty JVM server and explain the advantages and
possibilities.
24 A Software Architect’s Guide to Java Workloads in IBM CICS Transaction Server

Chapter 3. Using CICS Liberty JVM servers
to develop application interfaces

This chapter describes how to implement the modernization of presentation in IBM CICS
Transaction Server (TS) with CICS Liberty Java virtual machine (JVM) server. We include
scenarios to develop CICS Liberty JVM server applications to gain the benefit of IBM CICS
Transaction Server for z/OS Value Unit Edition and the features that the Liberty JVM server
provides to run the presentation logic. We also introduce a toolkit to migrate an existing Java
application from other platforms to CICS Liberty JVM server.

This chapter covers the following topics:

� 3.1, “CICS Liberty JVM server scenarios” on page 26
� 3.2, “CICS Liberty JVM server features for the presentation layer” on page 28
� 3.3, “Migrate existing Java presentation logic to CICS Liberty JVM server” on page 32

3

© Copyright IBM Corp. 2014. All rights reserved. 25

3.1 CICS Liberty JVM server scenarios

Before CICS Liberty JVM server, CICS TS supported the 3270 screen and the web as the
presentation interfaces, with CICS TS Basic Mapping Support (BMS), CICS TS Web Support
(CWS), or CICS TS Dynamic Scripting Feature Pack.

The 3270 screen is a traditional mainframe interface that is not as modern as a web or mobile
interface. There are many requirements from IBM clients who use CICS TS to replace the
3270 screen with web browser and RESTful clients.

CICS TS Web Support can work with web applications, but the application programmers need
to use CICS TS web APIs to analyze the HTTP data and to assemble the HTTP response.
Web applications are typically no longer developed in this way.

The Dynamic Scripting feature pack was originally included with CICS Transaction Server for
z/OS Version 4 Release 1. It supports the use of PHP and Groovy to develop situational
applications. In CICS Transaction Server for z/OS Version 5 Release 1, the Dynamic Scripting
feature pack runs in CICS Liberty JVM server and it only supports PHP. We explain more in
3.2, “CICS Liberty JVM server features for the presentation layer” on page 28.

There are other third-party presentation technologies used to connect to CICS TS. Some
CICS TS customers are eager to modernize these client connectors with web front end
(servlets).

CICS Liberty JVM server is the preferred way to develop web applications in CICS TS or to
handle RESTful request. All Java workloads deployed using CICS Liberty are candidates for
approval for IBM CICS Transaction Server for z/OS Value Unit Edition.

There are two typical scenarios for customers to use CICS Liberty JVM server:

� Development of a Java solution for a new business requirement or replacement
� Replacement of an older presentation layer with a modern presentation layer

3.1.1 Scenario one

The first scenario is that a customer wants to develop a pure Java solution either for a new
business requirement or as a replacement of existing solution. The Java solution includes
presentation logic, business logic and data access logic. In this case, everything can be
deployed and run in a zNALC-enabled LPAR.

In Figure 3-1 on page 27, we show a general architecture for this scenario. We have a CICS
TS region running in a zNALC-enabled LPAR. In the region, we set up a JVM server for CICS
Liberty JVM server. We develop an application with presentation and application interfaces,
business logic, and data access. In the presentation layer, you can use the features that CICS
Liberty JVM server provides. For more information, see 3.2, “CICS Liberty JVM server
features for the presentation layer” on page 28.
26 A Software Architect’s Guide to Java Workloads in IBM CICS Transaction Server

Figure 3-1 Presentation, business logic, and data access in CICS Liberty JVM server

To develop and deploy a CICS TS application, the CICS TS Explorer SDK is a preferred tool.
It can be downloaded at no charge from the IBM website and installed in an Eclipse
integrated development environment (IDE). The development process is similar to the
process used to develop a Liberty project for a distributed platform. To access the data, CICS
TS provides the JCICS API support.

After the development work is done, the Java web application, either in the form of WAR files
or an EBA file, can be deployed as one or more CICS TS bundles in a z/OS file system (zFS).
If there are common Java classes to be shared by multiple versions of different Java web
applications, you can deploy these classes as common OSGi bundles to zFS directories and
refer to these directories from a bundleRepository element of the server.xml file of the Java
web applications.

For more information about how to develop Java applications in CICS Liberty JVM server, see
Chapter 4, “Porting JEE applications to a CICS Liberty JVM server” on page 33.

3.1.2 Scenario two

Another scenario is that there is a need to replace older presentation layers (for example,
BMS) with a more modern presentation layer, such as a web or RESTful interface. In this
case, existing business logic and data access can be reused. You can develop and deploy the
new presentation layer in CICS Liberty JVM server that runs in a zNALC-enabled LPAR. The
presentation layer can then link to the existing business logic, which is still in a standard z/OS
LPAR. Figure 3-2 on page 28 shows the architecture for this scenario.

zNALC enabled LPAR

CICS transaction server

JVM server

Liberty
Presentation logic Business logic

JSP

Servlet

JSF

PHP*

JSON

JAX-RS

JAX-WS

Bean Validation

JAX-B

Java
applications

TDQ or TSQ

MQ

VSAM

DB2

HTTP

* CICS Dynamic
Scripting Feature Pack
Chapter 3. Using CICS Liberty JVM servers to develop application interfaces 27

.

Figure 3-2 Presentation in CICS Liberty JVM server and link to existing business logic

The development and deployment in this scenario is the same as the previous scenario. The
difference is that we focused on only the presentation layer. To communicate with an existing
business logic in another CICS region, distributed program link (DPL) is a preferred way.
Channels and containers and COMMAREA are both supported to carry the data.

Many existing CICS TS applications are centered on the use of structured data records,
which are typically stored as sequential files in the Virtual Storage Access Method (VSAM)
data set or as DB2 tables. To communicate with these existing applications, it is frequently
desirable to reuse the copybooks, which describe these existing record structures. To simplify
the interactions from the Java application with the structured data required by the existing
CICS TS applications, IBM provides utilities such as JZOS and J2C to make the task easier.
For more information about how to use JZOS and J2C, see Chapters 8 in the IBM Redbooks
publication titled IBM CICS and the JVM server: Developing and Deploying Java Applications,
SG24-8038:

http://www.redbooks.ibm.com/abstracts/sg248038.html

3.2 CICS Liberty JVM server features for the presentation layer

CICS TS uses some of the features in the WebSphere Application Server Liberty Profile to
run the following in a JVM server:

Web applications JavaServer Pages (JSP), JavaServer Faces (JSF), and so on

Web services Java API for XML Web Services (JAX-WS) and Java Architecture for
XML Binding (JAXB)

RESTful services JavaScript Object Notation (JSON) and Java API for RESTful Web
Services (JAX-RS)

zNALC enabled LPAR

CICS transaction server

JVM server

Liberty

Presentation logic

JSP

Servlet

JSF

PHP*

JSON

JAX-RS

JAX-WS

Bean Validation

JAX-B

HTTP COBOL
applications

TDQ or TSQ

MQ

VSAM

DB2

z/OS LPAR

* CICS Dynamic
Scripting Feature Pack
28 A Software Architect’s Guide to Java Workloads in IBM CICS Transaction Server

http://www.redbooks.ibm.com/abstracts/sg248038.html

For a list of features that CICS TS V5.2 supports, see “Liberty features” in the IBM Knowledge
Center:

http://ibm.co/1FPFtlA

In this section, we briefly introduce the Liberty features that CICS support for the presentation
layer. As mentioned, these features are from the WebSphere Application Server Liberty
profile. For more information about how to use these features, see the IBM Redbooks
publication titled WebSphere Application Server Liberty Profile Guide for Developers,
SG24-8076:

http://www.redbooks.ibm.com/abstracts/sg248076.html?Open

3.2.1 JavaServer Pages 2.2

JavaServer Pages (JSP) are a widely used technology to easily create dynamic web pages
based on HTML, XML, or other document types. JavaServer Pages enable the separation of
the Hypertext Markup Language (HTML) code from the business logic in web pages so that
HTML programmers and Java programmers can more easily collaborate in creating and
maintaining pages.

CICS Liberty JVM server supports the JavaServer Pages 2.2 specification. For more
information about JSP and how to develop JSP in the Liberty profile, see “Developing JSP
files” in the IBM Knowledge Center:

http://ibm.co/1w2NNgN

3.2.2 JavaServer Faces 2.0

JavaServer Faces (JSF) simplify the development of user interfaces for web applications by
providing the following features:

� Templates to define the layout
� Composite components that turn a page into a JSF UI component
� Custom logic tags
� Expression functions and validation
� Component libraries
� XHTML page development

For more information, see “JavaServer Faces” in the IBM Knowledge Center:

http://ibm.co/1zliJWI

3.2.3 Java Servlet 3.0

Java servlets are a widely used technology for building dynamic content for web-based
applications. The servlet Java classes are used to extend the capabilities of a server,
commonly a web server.

CICS Liberty JVM server provides support for HTTP servlets written to the Java Servlet 3.0
specification. For more information about developing servlets, see the following website:

http://ibm.co/1ygLVBd
Chapter 3. Using CICS Liberty JVM servers to develop application interfaces 29

http://ibm.co/1FPFtlA
http://www.redbooks.ibm.com/abstracts/sg248076.html?Open
http://ibm.co/1w2NNgN
http://ibm.co/1zliJWI
http://ibm.co/1ygLVBd

3.2.4 JavaScript Object Notation 1.0

The JavaScript Object Notation (JSON4J) library is an implementation of a set of JavaScript
Object Notation (JSON) handling classes for use within Java environments.

The JSON4J library provides the following functions:

� A simple Java model for constructing and manipulating data to be rendered as the JSON
implementation.

� A fast transformation of XML for JSON conversion for situations where you want
conversion from an XML reply from a web service to a JSON structure for easy use in
Asynchronous JavaScript and XML (Ajax) applications.

� A JSON string and stream parser that can generate the corresponding JSONObject,
which represents that JSON structure in Java. You can then change that JSONObject and
serialize the changes back to the JSON implementation.

CICS Liberty JVM server provides access to the JSON4J library, which includes a set of
JSON handling classes for Java environments. For more information, see “JavaScript Object
Notation (JSON4J)” in the IBM Knowledge Center:

http://ibm.co/1w2Ol6o

JSON4J can be used to connect mobile devices to CICS TS. For more information, see
Chapter 5, “Connecting mobile devices to CICS Transaction Server” on page 47.

3.2.5 Java API for RESTful Web Services

Java API for RESTful Web Services (JAX-RS) is a technology to develop services that follow
Representational State Transfer (REST) principles. RESTful services are based on
manipulating resources. Resources can contain static or dynamically updated data. By
identifying the resources in your application, you can make the service more useful and
easier to develop.

CICS Liberty JVM server provides support for the Java API for RESTful Web Services on the
Liberty profile. For more information about JAX-RS, see “Developing web services - RESTful
services” in the IBM Knowledge Center:

http://ibm.co/15PABQL

JAX-RS can also be used to connect the mobile device to CICS TS. For more information,
see Chapter 5, “Connecting mobile devices to CICS Transaction Server” on page 47.

3.2.6 Java API for XML Web Services 2.2

Java API for XML-based Web Services (JAX-WS) is the next-generation web services
programming model. Using JAX-WS, development of web services and clients is simplified,
with more platform independence for Java applications, by the use of dynamic proxies and
Java annotations.

CICS Liberty JVM server supports SOAP web services that are based on JAX-WS 2.2. For
more information, see “JAX-WS” in the IBM Knowledge Center:

http://ibm.co/1vNzlaD

JAX-WS can also be used to connect the mobile t CICS TS. For more information, see
Chapter 5, “Connecting mobile devices to CICS Transaction Server” on page 47.
30 A Software Architect’s Guide to Java Workloads in IBM CICS Transaction Server

http://ibm.co/1w2Ol6o
http://ibm.co/15PABQL
http://ibm.co/1vNzlaD

3.2.7 Java Architecture for XML Binding 2.2

Java Architecture for XML Binding (JAXB) is a Java technology that provides an easy and
convenient way to map Java classes and XML schema for simplified development of web
services. JAXB leverages the flexibility of platform-neutral XML data in Java applications to
bind XML schema to Java applications without requiring extensive knowledge of XML
programming. JAXB provides the XJC schema compiler tool and the schemagen schema
generator tool to transform between XML schema and Java classes.

CICS TS provides JAXB support to map between Java classes and XML representations. For
more information, see “JAXB” see in the IBM Knowledge Center:

http://ibm.co/1vloS0X

JAXB can also be used to connect the mobile device to CICS TS. For more information, see
Chapter 5, “Connecting mobile devices to CICS Transaction Server” on page 47.

3.2.8 Bean Validation 1.0

It is always quite important to validate input received from the user to maintain data integrity in
application logic. For example, it is necessary to validate the input of an email address before
sending email. Bean Validation is a new validation model that is available as part of the Java
Enterprise Edition 6 platform. The model is supported by constraints in the form of
annotations placed on a field, method, or class of a JavaBeans component.

The Bean Validation API is introduced as a standard mechanism to validate enterprise
JavaBeans in all layers of an application, including presentation, business, and data access.
Before the Bean Validation specification, the JavaBeans were validated in each layer. To
prevent the reimplementation of validations at each layer, developers bundled validations
directly into their classes or copied validation code, which was often cluttered. Having one
implementation that is common to all layers of the application simplifies the developer’s work
and saves time.

With Bean Validation, CICS Liberty JVM server provides validations for JavaBeans at each
layer of an application. For details, see “Bean Validation” in the IBM Knowledge Center:

http://ibm.co/1zlxfxU

3.2.9 PHP support by Dynamic Scripting Feature Pack

PHP support is a feature provided by CICS TS Transaction Server Feature Pack for Dynamic
Scripting V2.0, not the WebSphere Application Server Liberty profile. The feature pack
provides an agile web application platform for developing and running modern web
applications. You can use the Feature Pack for Dynamic Scripting V2.0 to create and run PHP
applications that meet your specific needs or the needs of your clients. For more information,
see “CICS Transaction Server for z/OS Feature Pack for Dynamic Scripting V2.0” in the IBM
Knowledge Center:

http://ibm.co/1tOHAO2
Chapter 3. Using CICS Liberty JVM servers to develop application interfaces 31

http://ibm.co/1vloS0X
http://ibm.co/1zlxfxU
http://ibm.co/1tOHAO2

3.3 Migrate existing Java presentation logic to CICS Liberty
JVM server

The WebSphere Application Server V8.5.5 Liberty profile provides a simple tool to analyze
what Java API packages are supported according to feature. For example, the following
command produces an XML file that shows all of the API packages for each feature, which
can be cross-checked against the Liberty features supported in CICS TS:

$USSHOME/wlp/bin/featureManager featureList
--encoding=ibm037/tmp/wlp855_featureList.xml

Migrating a Java application from one platform to another is easier than the migrating
applications developed in other languages. If you have existing Java presentation logic
outside of CICS TS and want to migrate the logic to CICS Liberty JVM server, the IBM
WebSphere Application Server Migration Toolkit can make the migration easier.

The WebSphere Application Server Migration Toolkit is a suite of tools and collections of
knowledge that enable your organization to quickly and cost-effectively migrate to WebSphere
Application Server V7.0 through V8.5.5, whether from a previous version of WebSphere
Application Server or competitive application servers, including Apache Tomcat Server, JBoss
Application Server, Oracle Application Server, and Oracle WebLogic Server.

For more information, see the “IBM WebSphere Application Server Migration Toolkit” page on
IBM developerWorks®:

http://www.ibm.com/developerworks/websphere/downloads/migtoolkit/

The Migration Toolkit can help you complete part of the migration, but not all. You still need to
tailor your application to make it work within CICS. For example, the data access in
mainframe is quite different from that in a distributed platform. You might need to move some
recoverable application data to VSAM or DB2, and then use the JCICS API or JDBC to
access to the data. For more information, see Chapter 4, “Porting JEE applications to a CICS
Liberty JVM server” on page 33.

Note: Make sure that the features used in existing Java applications are supported by
CICS Liberty.
32 A Software Architect’s Guide to Java Workloads in IBM CICS Transaction Server

http://www.ibm.com/developerworks/websphere/downloads/migtoolkit/

Chapter 4. Porting JEE applications to a
CICS Liberty JVM server

This chapter describes considerations for porting existing Oracle Java Enterprise Edition
(Java EE) and other existing Java applications to an IBM CICS Liberty profile Java virtual
machine (JVM) server. It also explains considerations for developing Java applications that
use features that are unique to a CICS Liberty JVM server and other Liberty features.

It includes the following topics:

� 4.1, “Porting a Java application to a CICS Liberty JVM server” on page 34
� 4.2, “Developing new application using JCICS classes” on page 36
� 4.3, “Developing new applications using other Liberty features” on page 41

4

© Copyright IBM Corp. 2014. All rights reserved. 33

4.1 Porting a Java application to a CICS Liberty JVM server

The features in a release of CICS Liberty JVM server are a subset of the features supported
by the corresponding release of the Liberty profile that is provided in IBM WebSphere
Application Server for z/OS. Existing JEE and other Java applications can be ported or
migrated to a CICS Liberty JVM server if the applications use only features that are supported
by the currently installed release level of the CICS Liberty JVM server.

The supported server features for a release are determined by which features have been
verified by the CICS Transaction Server (CICS TS) development organization. For a list of the
currently supported features, see the “Liberty features” web page:

http://ibm.co/1yD5Ed6

Other enhancements may be available and should work in a CICS Liberty JVM server, with
certain caveats or restrictions. For information about these enhancements, check the
CICSdev Community blog on IBM developerWorks:

https://www.ibm.com/developerworks/community/blogs/cicsdev

One example of such an enhancement is the addition of support for IBM WebSphere MQ
messaging software, which is described in the article titled “Using the WebSphere MQ
classes for Java with a CICS JVM server:”

4.1.1 Which Java applications should be migrated to CICS TS

Not every Java application that meets the previously described criteria should be ported to
CICS Liberty JVM server. Consider porting Java applications only when there is a logical
reason or a need for the application to run in a CICS TS JVM server.

For example, a Java application should be migrated to CICS Liberty JVM server in these
situations:

� If you have an Java application that interacts with a CICS TS application using CICS TS
Transaction Gateway, CICS TS MQ Bridge, or a JEE Connector (J2C) connection factory.
Consider moving this Java application to Liberty JVM server to take advantage of being
colocated with the CICS TS application that is being accessed by the user interface.

� If you want to start using some of the features to Liberty JVM server in CICS. For example,
the JDBC features that allow dynamic binding of a data source at run time or the feature
that coordinates the commits or rolls back updates made to remote data sources (JDBC
Type 4) in the same logical unit of work as other CICS TS managed resource.

� If you want to take advantage of using CICS bundles for your applications. Using bundles
means that application artifacts can be packaged with the corresponding CICS TS
resource definitions (that is, definitions for TRANSACTIONs, PROGRAMs, URIMAPs, and

Note: To determine which features are available in a particular instance of CICS Liberty
JVM server, locate the product service signature string in the Liberty startup messages,
such as this example:

product = CICS Transaction Server for z/OS 5.2.0, CICS Liberty JVM server
NOTUSAGE, WebSphere Application Server 8.5.5.1, WAS FOR Z/OS 8.5.5.1
(wlp-1.0.4.cl50120140502-1451)

In this example, the features included with release 8.5.5.1 of the WebSphere Application
Server for z/OS Liberty profile are available.
34 A Software Architect’s Guide to Java Workloads in IBM CICS Transaction Server

http://ibm.co/1yD5Ed6
https://www.ibm.com/developerworks/community/blogs/cicsdev

so on) so that both the application and its resource definitions can be managed or
deployed as a single administrative entity.

Because CICS Liberty JVM server runs in a CICS TS JVM server, all of the inherent
advantages provided to Java applications by the CICS JVM server are available to CICS
Liberty JVM server applications. For example:

� Rather than having multiple JVMs running a CICS TS task, there is a single JVM in a JVM
server that can spawn up to 256 threads, with each thread executing a CICS TS task. This
provides vertical scaling as workload increases. A CICS Liberty JVM server can also be
configured with only the features required by an application to execute. Eliminating the
features not required in the server avoids loading unnecessary functions and reduces
server startup time and storage use.

� Multiple JVM severs can coexist is a single CICS TS region, with each JVM server
configured independently and running different applications. Each JVM server (CICS
Liberty and non-Liberty), running different applications, can horizontally scale application
workload within a CICS region. Currently, there can be only one CICS Liberty JVM server
in a CICS region that interacts with a Liberty angel process, using IBM z/OS security
features. For horizontal scaling of CICS Liberty applications that required z/OS security,
the CICS Liberty JVM server needs to be replicated in another CICS region.

For more information about running Java in CICS TS JVM servers and the Open Service
Gateway initiative (OSGi), download the white paper titled “Running Java workloads with JVM
servers and OSGi:”

http://ibm.co/12gJqBL

4.1.2 Using the OSGi framework

Another consideration for consolidating applications in CICS Liberty JVM server is to use the
OSGi framework for deploying and administering Java applications. The framework
restructures the components of an application as individual bundles of components or
packages that are loosely coupled but constitute an application when combined. This
contrasts with packaging solutions where all components are packaged and administered in a
single Java archive (JAR) file that must be included in the class path. This separation of the
application into bundles enables independent deployment and management of the different
bundles that compose an application and, potentially, reuse of selected bundles by other
applications.

This flexibility has key benefits:

� Different versions or levels of the same package can coexist in CICS Liberty JVM server
concurrently.

� Because the Java class path is not used to load the Java classes, changes can be
implemented without the need to stop and restart the JVM.

There are various development tools available (such as CICS TS Explorer or Eclipse
integrated development environment [IDE] tools, such as Luna or Kepler) to aid in refactoring
existing Java artifacts, such as JARs, into OSGi bundles for deployment to bundle repositories
and packaging applications into CICS TS bundles for deployment to a CICS Liberty JVM
server run time.

For more information about OSGi packaging in CICS Liberty JVM server, see “The OSGi
Service Platform” in the IBM Knowledge Center:

http://ibm.co/1CGxIQT
Chapter 4. Porting JEE applications to a CICS Liberty JVM server 35

http://ibm.co/12gJqBL
http://ibm.co/1CGxIQT

For more information about Liberty application development in general and to download
Eclipse and Liberty development plug-ins, go to the following web pages:

https://developer.ibm.com/wasdev

or

http://www.eclipse.org/downloads/packages/

To download the CICS Explorer system management tool, start at this web page:

http://www.ibm.com/cics/explorer

4.2 Developing new application using JCICS classes

CICS TS provides Java interfaces to most of the same standard CICS TS application
programmer interfaces (APIs) that are in traditional CICS TS application programs. New Java
applications can be developed or existing Java applications can be modified to access almost
the full set of CICS TS APIs. Use of these APIs gives Java applications running in a CICS TS
JVM server full access to VSAM files, the ability to link to COBOL and other CICS application
programs passing common data areas and containers, the ability to access transient data and
temporary storage queues, and so on.

Example 4-1 and Example 4-2 are Java code that shows some the Java class library for CICS
(JCICS) classes and methods that can be used in a CICS Liberty JVM server application.

Example 4-1 JCICS example of accessing a key sequenced VSAM file

// Instantiate an instance of a JCICS record holder
com.ibm.cics.server.RecordHolder record = new

com.ibm.cics.server.RecordHolder();
// Instantiate an key sequence VSAM file
com.ibm.cics.server.KSDS file = new com.ibm.cics.server.KSDS();
// Set the file name
file.setName("FILEA");
// Retrieve and delete a record in a Try/Catch block
try {

file.read(key.getBytes(),record);
file.delete(key.getBytes());

catch (Exception e) {

Note: Both Eclipse tools and CICS Explorer work with common source code management
products, such as IBM Rational® Team Concert.
36 A Software Architect’s Guide to Java Workloads in IBM CICS Transaction Server

https://developer.ibm.com/wasdev
http://www.eclipse.org/downloads/packages/
http://www.ibm.com/cics/explorer

Example 4-2 JCICS examples of using channels and containers in linking to a CICS TS program

// Instantiate an instances of a JCICS channel and a JCICS container
Channel channel = task.createChannel("MINICICS-Channel");
Container requestContainer = channel.createContainer("MINICICS");
// Copy contents of the CICS commarea area to the JCICS request container
requestContainer.put(commarea.getByteBuffer());
// Invoke program and pass the channel with the request container
progName.link(channel);
// Retrieve the response container from the channel
Container responseContainer = channel.getContainer("MINICICS");
// Copy contents of the response container to the CICS commarea area
commarea = new com.ibm.ats.odm.COMMAREA(responseContainer.get());

CICS Explorer and Eclipse development tools can also be used to develop Java applications
that use JCICS. Accessing CICS TS resources by using JCICS classes should be more
understandable to Java programmers than the EXEC CICS equivalents used in other
languages.

4.2.1 Java access to records and their fields

Eventually, most applications running in CICS TS need to work with a record and its fields
when accessing a VSAM file, a DB2 database row, and so on. Most Java development on
other platforms work with stream-oriented data rather than with record-oriented data as
typical applications in CICS TS. Because of this, there are options for generating a Java class
that represents the layout of records and the corresponding set and get methods for
accessing the individual fields in the record. Example 4-3 shows use of set and get methods.

Example 4-3 Example of the using of get and set methods with a COMMAREA class

commarea.setName(request.getParameter("custName"));
commarea.setEffectdate(request.getParameter("effectDate"));
commarea.setAmount(Long.parseLong(request.getParameter("amount")));
commarea.setAge(Long.parseLong(request.getParameter("age")));

// Invoke a CICS COBOL program passing a common area
commarea = MiniCICS.invoke(commarea);

request.setAttribute("custName",commarea.getName());
request.setAttribute("age", commarea.getAge());
request.setAttribute("amount", commarea.getAmount());
request.setAttribute("effectDate", commarea.getEffectdate());

Note: Some JCICS classes and methods should not be used in CICS Liberty JVM server.
For example, any API that deals with a terminal (that is, methods such clear, converse,
erase, and so on) would not be used because these require a principle facility or terminal
and there would be no terminal associated with a task running in CICS Liberty JVM server.
Chapter 4. Porting JEE applications to a CICS Liberty JVM server 37

The subsections that follow describe some of the options for generating Java classes from
record-oriented layouts.

Rational Application Developer J2C wizard
In IBM Rational Application Developer, the Java EE Connectors feature has a J2C component
that includes a wizard that generates a Java data bean with get and set methods. These
methods can be used to access individual fields within a record. Supported languages
include COBOL, C, and PL/I (see Figure 4-1).

Figure 4-1 Rational Application Developer J2C wizard
38 A Software Architect’s Guide to Java Workloads in IBM CICS Transaction Server

The Java methods generated by the wizard include support for code page conversion and
conversion between Big and Little Endian data types (Figure 4-2).

Figure 4-2 Rational Application Developer J2C wizard import options

Record Class Generator utility
Another option for generating a Java class with get and set methods for fields from an
existing record layout is the JZOS Assembler and COBOL Record Generator utility that is part
of the IBM experimental JZOS batch toolkit for z/OS SDKs (see Example 4-4). This utility runs
on z/OS and can be used to generate Java classes from COBOL copybooks and Assembler
DSECTs.

Example 4-4 Snippet of JCL executing the RecordClassGenerator utility

//* Generate a .java file for each copybook
//JAVA EXEC PROC=EXJZOSVM,VERSION='50'
//MAINARGS DD *
com.ibm.jzos.recordgen.cobol.RecordClassGenerator
 bufoffset=false
 package=com.ibm.ats.cobol.records
 outputDir=~/cobgen
//SYSADATA DD DSN=&&ADATA,DISP=(OLD,DELETE)

For more information, see the “IBM Experimental Version of the JZOS Batch Toolkit and a
Cookbook for z/OS SDKs” page in the IBM developerWorks Communities section:

http://ibm.co/1vRC3f7
Chapter 4. Porting JEE applications to a CICS Liberty JVM server 39

http://ibm.co/1vRC3f7

You can find details about both of these techniques in Chapter 8 of the Redbooks publication
titled IBM CICS and the JVM server: Developing and Deploying Java Applications,
SG24-8038.

4.2.2 Debugging Java in CICS Liberty JVM server

Both the CICS TS Explorer and Eclipse integrated development environments (IDEs) provide
means to debug remote Java applications by stepping thought lines of code, setting
breakpoints, inspecting the contents of variables and so on. This technique can be used to
also debug Java applications running in CICS Liberty JVM server. Figure 4-3 shows remotely
debugging a CICS Liberty JVM server application in CICS TS Explorer.

Figure 4-3 Debug perspective of a Java applications running in CICS Liberty JVM server

Note: Notice the Java statement in Example 4-2 on page 37 where the responseContainer
was “moved” to the COMMAREA using a constructor method. This was required because this
Java class was generated by the JZOS Record Generator utility, which did not generate a
set method that accepts a byte array for updating the entire record. Only set methods for
individual fields are generated. The Rational Application Developer J2C wizard does
generate all of required methods.

Note: Bean Validation 1.0 is one the features supported by the CICS Liberty JVM server,
but neither of these two methods include bean validation annotations. If you want to include
bean validation support, the annotations must be added manually.
40 A Software Architect’s Guide to Java Workloads in IBM CICS Transaction Server

http://www.redbooks.ibm.com/abstracts/sg248038.html?Open
http://www.redbooks.ibm.com/abstracts/sg248038.html?Open

The setup for a remote debugging session for CICS Java from a developer’s IDE is the same
as when debugging on any other remote platform. Remote debugging can be very useful
when migrating an existing application to CICS Liberty JVM server or the development of a
new application for CICS Liberty JVM server.

4.3 Developing new applications using other Liberty features

There are Liberty features that are unique to CICS TS. Others provide functions that are used
by CICS Liberty JVM server for better integration with CICS Transaction Server for z/OS and
IBM CICS Transaction Server for z/OS Value Unit Edition.

4.3.1 CICS Liberty JVM server Java Database Connectivityoptions

CICS Liberty JVM server supports two different features for accessing Java Database
Connectivity (JDBC) data sources.

� The first JDBC feature (cicsts:jdbc-1.0) is unique to CICS Liberty JVM server. It is tightly
integrated with CICS TS for using the existing CICS TS DB2 connection resource (the
DB2CONN resource). This feature supports only a DB2 local connection (JDBC Type 2).

� The second JDBC feature (jdbc-4.0) is supplied by IBM WebSphere Application Server for
z/OS Liberty profile and supports remote connections (JDBC Type 4).

Local Connections (JDBC Type 2)
The CICS TS JDBC connection feature (cicsts:jdbc-1.0) is used when an application
accesses a local DB2. The access is automatically included in a logical unit work managed by
the CICS TS transaction manager. Commits and rollbacks of updates made to DB2 are
automatically coordinated with commits and rollbacks of other CICS TS resources with no
additional coding required. Security for these applications is also managed by the CICS TS
DB2 connection definition.

Remote Connections (JDBC Type 4)
CICS TS Liberty uses the Liberty JDBC feature (jdbc-4.0) for accessing remote DB2
subsystems (JDBC Type 4). Java applications that use this feature must use the Java
Transaction API (JTA) to integrate commits and rollbacks for remote JDBC system with CICS
TS transaction management. This allows a remote DB2 connection to participate in the same
global transaction as other CICS TS resource, such as access to VSAM files, transient data
queues, temporary storage queues, and so on. It also supports other JDBC drivers, such as
Derby.

Note: To enable remote debugging of a CICS Liberty server the following statement must
be included in the JVM profile of the CICS Liberty JVM server resource definition:

-agentlib:jdwp=transport=dt_socket,server=y,address=<port>

Note: Use of the JDBC feature provided in the base Liberty product is discouraged for
local or JDBC Type 2 connections in CICS Liberty JVM server.
Chapter 4. Porting JEE applications to a CICS Liberty JVM server 41

4.3.2 JDBC connection options

There are two ways to identify the DB2 system to which the application is to connect:

� Use a JDBC-provided DriverManager by providing a Uniform Resource Locator (URL) to
provide connection properties.

� Use a data source by doing a Java Naming and Directory Interface (JNDI) lookup of the
data source name to obtain connection properties at execution time.

DriverManager JDBC connections
The driver manager technique uses one of two types of URLs to identify the target DB2
subsystem and optional connection properties:

� The default URL (see Example 4-5) does not provide an explicit DB2 location name and
no properties and defaults to the DB2 system are specified by the CICS TS DB2CONN
resource.

Example 4-5 Example of connecting to the default DB2 subsystem using a Default UR

Connection connection = DriverManager.getConnection("jdbc:default:connection");

� The other URL format provides a DB2 location name in the URL (see Example 4-6). The
location name can be the location name of the local DB2 subsystem or the location name
of a remote DB2 subsystem if DB2 distributed data facility (DDF) has been configured
between the local and remote DB2 subsystem.

Example 4-6 Example of requesting an explicit connection to DB2 subsystem by location name

Connection connection = DriverManager.getConnection("jdbc:db2os390:location");

Note: The -DISPLAY DDF command display provides the information required to configure
JDBC Type 2 and Type 4 connections. The LOCATION value provides the location name, and
DOMAIN and TCPPORT values provide the server name and port number:

DSNL080I #DI2C DSNLTDDF DISPLAY DDF REPORT FOLLOWS:
DSNL081I STATUS=STARTD
DSNL082I LOCATION LUNAME GENERICLU
DSNL083I DSNV10P2 GBIBMIYA.IYCWZDB0 -NONE
DSNL084I TCPPORT=40100 SECPORT=30100 RESPORT=50101 IPNAME=-NONE
DSNL085I IPADDR=::9.20.5.0
DSNL086I SQL DOMAIN=winmvs2c.hursley.ibm.com
DSNL086I RESYNC DOMAIN=winmvs2c.hursley.ibm.com
DSNL089I MEMBER IPADDR=::9.20.5.0
DSNL105I CURRENT DDF OPTIONS ARE:
DSNL106I PKGREL = COMMIT
DSNL099I DSNLTDDF DISPLAY DDF REPORT COMPLETE

Note: In a Liberty JVM server, DriverManager connections require the enablement of
the CICS TS JDBC (cicsts:jdbc-1.0) Liberty feature.
42 A Software Architect’s Guide to Java Workloads in IBM CICS Transaction Server

DataSource JDBC connections
The DataSource method allows an application to use the Java Naming and Directory
Interface (JNDI) to look up data sources defined in the Liberty server.xml file. A special JNDI
name of jdbc/defaultCICSDataSource (see Example 4-7) is used by the CICS TS JDBC
feature for CICS TS JDBC connections.

Example 4-7 JNDI lookup for the default CICS TS JDBC data source

context = new InitialContext();
dataSource = (DataSource) context.lookup(jdbc/defaultCICSDataSource);
Connection connection = dataSource.getConnection();

Connections to remote DB2 subsystems use the JNDI name of the data source defined in the
server.xml file (see Example 4-8).

Example 4-8 JNDI lookup for a remote JDBC data source

context = new InitialContext();
dataSource = (DataSource) context.lookup(jdbc/myDataSource);
Connection connection = dataSource.getConnection();

Example 4-9 is a snippet of the server.xml file that show the JDBC JNDI configuration
required for these examples.

Example 4-9 Contents of server.xml file related to JDBC

<featureManager>

 <feature>cicsts:jdbc-1.0</feature>
 <feature>jdbc-4.0</feature>

 </featureManager>
.......
<dataSource jndiName="jdbc/MyDataSource">
 <jdbcDriver libraryRef="defaultCICSDb2Library"/>
 <properties.db2.jcc databaseName="DSNV10P2" driverType="4"

password="{xor}Lz4sLCgwLTs=" portNumber="40100"
serverName="winmvs2c.hursley.ibm.com" user="DB2USER”/>

</dataSource>

<cicsts_dataSource id="defaultCICSDataSource"
jndiName="jdbc/defaultCICSDataSource"/>

<cicsts_jdbcDriver id="defaultCICSJdbcDriver" libraryRef="defaultCICSDb2Library"/>

<library id="defaultCICSDb2Library">
 fileset dir="/usr/lpp/db2/jdbc/classes" includes="db2jcc4.jar

DB2jcc_license.jar”/>
<fileset dir="/usr/lpp/db2/jdbc/lib" includes="libdb2jcct2zos4_64.so"/>

</library>

Note: The cics_ts_jdbcDriver and library elements are required for both DriverManager
and DataSource connections. They identify the libraries where the JDBC driver
components reside and the Java JAR files and shared object library to be used.
Chapter 4. Porting JEE applications to a CICS Liberty JVM server 43

44 A Software Architect’s Guide to Java Workloads in IBM CICS Transaction Server

Part 3 Mobile devices

This part introduces the ability to expose existing CICS programs to mobile devices as part of
a new workload. It describes two key mechanisms by which to do this, both of which involve
hosting Java-based transformation services in CICS.

These two mechanisms involve the use of CICS Liberty JVM server, Java in CICS, and the
JavaScript Object Notation (JSON) and XML data serialization formats. CICS Liberty JVM
server allows standard Java components to be deployed to CICS, and CICS Java allows
CICS web services to run in a Java-based pipeline.

This section includes the following chapters:

� Chapter 5, “Connecting mobile devices to CICS Transaction Server” on page 47
� Chapter 6, “Mobile devices and CICS Liberty JVM server” on page 59
� Chapter 7, “Mobile devices and CICS TS Java” on page 67

Part 3
© Copyright IBM Corp. 2014. All rights reserved. 45

46 A Software Architect’s Guide to Java Workloads in IBM CICS Transaction Server

Chapter 5. Connecting mobile devices to
CICS Transaction Server

This chapter is about general considerations when using mobile devices to interact with IBM
CICS TS applications. The two chapters that follow covers specific CICS TS technologies for
connecting mobile devices when using IBM CICS Transaction Server for z/OS Value Unit
Edition.

This chapter includes the following topics:

� 5.1, “Mobile devices and IBM CICS Transaction Server for z/OS Value Unit Edition” on
page 48

� 5.2, “Use of mobile devices with CICS TS” on page 49

� 5.3, “Accessing services by using XML and JSON” on page 50

� 5.4, “CICS TS web service development strategies” on page 53

� 5.5, “IBM MobileFirst Platform Foundation and CICS TS” on page 54

� 5.6, “IBM DataPower and CICS TS” on page 56

� 5.7, “Configuration for high availability” on page 56

5

© Copyright IBM Corp. 2014. All rights reserved. 47

5.1 Mobile devices and IBM CICS Transaction Server for z/OS
Value Unit Edition

For many years, CICS TS has been capable of hosting programs that can be called from
outside CICS TS. Technologies such as the CICS TS Transaction Gateway, CICS TS Web
Support, and CICS TS web services have enabled integration of CICS TS assets in a
heterogeneous computing environment. The clients of these services could be dumb
terminals, web browsers, peer servers, or even mobile devices.

Exposing existing CICS TS assets to new types of clients can be an example of a new
workload, particularly if the client is a mobile device, or other system of engagement. There
are many technologies that can be used to connect a mobile device to CICS TS, some of
which involve hosting transformation services in CICS TS. The transformation service
qualifies as a candidate for approval to be hosted in IBM CICS Transaction Server for z/OS
Value Unit Edition if it meets these conditions:

� Enables a new type of client (that is, a new workload) to call a program in CICS TS
� Is hosted in a JVM server in CICS TS
� Links to a target application program that is hosted in a regular CICS TS region

These are examples of transformation services that enable connectivity:

� Transforming data in JSON format to and from CICS TS application data format
� Transforming data in XML format to and from CICS TS application data format

Figure 5-1 illustrates a mobile device being used to access CICS TS. A transformation
service is hosted in the Value Unit Edition and provides access to applications from another
CICS TS region.

Figure 5-1 Hosting a transformation service that links to an existing CICS TS program

CICS Value Unit Edition

zNALC LPAR

XML/JSON to
Application Data
Transformation Service

JVMSERVER

DPL

CICS

Application Program

z/OSz/OS

z/OS LPAR

Mobile
Device
48 A Software Architect’s Guide to Java Workloads in IBM CICS Transaction Server

Two major connectivity options exist that can satisfy the criteria:

� Hosting transformation services in an IBM WebSphere Application Server Liberty profile
environment in CICS TS. This can involve using standard Java data manipulation
technologies, such as JAX-RS and JAX-WS. The WebSphere Application Server Liberty
profile is hosted within a JVM server in CICS TS. Therefore, it is candidate for approval to
be deployed to the Value Unit Edition.

� Hosting CICS TS integrated transformation services in a JVM server. This involves hosting
a WSBind file in a Java-based pipeline in CICS TS. Because the pipeline meets this hosting
criterion, it a candidate for approval to be deployed to the Value United Edition.

These two techniques are described further in the two chapters that follow:

� Chapter 6, “Mobile devices and CICS Liberty JVM server” on page 59
� Chapter 7, “Mobile devices and CICS TS Java” on page 67

The remainder of this chapter reviews issues that are common to both scenarios.

5.2 Use of mobile devices with CICS TS

The revolution in mobile computing is a significant opportunity for CICS TS based
organizations. By extending existing enterprise applications to a mobile platform, a business
can capitalize on its existing investment without the need to develop an entirely new solution
to support mobile services. In addition, a line of business can provide service to users who
increasingly expect to be able to interact with an organization byusing their mobile phones.

As a platform, these are the primary benefits offered by CICS TS with mobile devices:

� Provides reuse of existing enterprise services

Existing assets and investments can be reused as part of a mobile application. Any
existing investment in web services can be leveraged for mobile clients.

� Provides simplified access to enterprise data

CICS TS supports access to data by using two popular data serialization formats: XML
(Extensible Markup Language) and JSON (JavaScript Object Notation). JSON is a
particularly popular data format for use from mobile devices.

Note: Other techniques exist to connect a mobile device to CICS TS, but the associated
workload is less likely to be approved to be hosted in IBM CICS Transaction Server for
z/OS Value Unit Edition. The techniques presented in this book are candidates for approval
for use with the Value Unit Edition.

If you’re interested in alternative connectivity, you could consider using any of these
options:

� IBM WebSphere Liberty z/OS Connect
� CICS Web Support and the 3270 Web Bridge
� CICS native web services implementation
� CICS Transaction Gateway
� Connectivity through IBM MQ
� Any other mechanism that can send work to CICS

Mobile devices, and the intermediate servers that they communicate with, are general
purpose computing devices. With sufficient effort, they can be made to communicate by
using any protocol that is supported by CICS.
Chapter 5. Connecting mobile devices to CICS Transaction Server 49

� CICS TS already operates at the heart of the enterprise

Hosting mobile applications within CICS TS brings them closer to the enterprise data that
they are accessing. This minimizes application path lengths and improves response time.

� Adopts a RESTful architectural style for service delivery

A RESTful architectural style is one where the target resource and the operation to be
performed against it are defined by a combination of a well-structured Uniform Resource
Identifier (URI) and one of the four Hypertext Transfer Protocol (HTTP) methods (GET, POST,
PUT, and DELETE). This architectural approach is favored among developers of applications
for mobile devices.

� Provides capacity to manage mobile workloads

Customers around the world use CICS TS TS to host hundreds of millions, and in some
cases billions, of transactions per day. CICS TS workload management provides a robust
and scalable platform that is suitable for supporting the heaviest of mobile workloads.

5.3 Accessing services by using XML and JSON

There are two common standards-based technologies for cross-platform data serialization:
Extensible Markup Language (XML) and JavaScript Object Notation (JSON). CICS TS
supports them both. It is likely that workload initiated from a mobile device will use one of
these formats.

The two formats share much in common. They both provide a way to describe structured data
in an interoperable text-based form. But their differences make them more or less suitable for
particular use scenarios. Either format can be used to serialize data when contacting CICS
TS from a mobile device, either directly or indirectly, via an intermediate gateway, mediation
service, or server.

5.3.1 Extensible Markup Language (XML)

XML is readily recognizable by the presence of angle brackets in the serialized data. XML
tags wrap each atomic data unit. The size of these tags can be a significant proportion of the
total size of the serialized data, which is the main cause of XML’s reputation as a verbose
(therefore inefficient) data format. In Example 5-1 on page 51, 160 characters of markup data
are used, compared to 85 characters of application data.

XML-based web services have been supported in CICS TS Transaction Server since
version 3. They involve a Web Service Description Language (WSDL) document that
describes the data format for a service in an interoperable form. Client programs can be
written or generated to call the XML-based web service by using the information from the
WSDL document.

The XML representation of the data is encapsulated in a SOAP message. SOAP is the
messaging protocol. A SOAP message can optionally contain an extensible list of headers in
addition to the XML application data. A family of related specifications has evolved for SOAP
and WSDL to allow for sophisticated data exchange models, including such qualities of
service as transactionality, identity propagation, and dynamically reconfigurable addressing.

SOAP implements its own error format, the SOAPFault. Applications pass error information to
each other by using SOAPFault messages.
50 A Software Architect’s Guide to Java Workloads in IBM CICS Transaction Server

XML-based web services are widely adopted in many industries and in many programming
environments. They remain a favorite technology for interoperability scenarios.

Example 5-1 XML data example with 160 characters of markup, 85 characters of application data

<contact xmlns="http://example.org/contacts">
 <name>International Business Machines Corp.</name>
 <address>
 <street>1 New Orchard Road</street>
 <city>Armonk</city>
 <state>NY</state>
 <code>10504-1722</code>
 </address>
 <phone>800-426-4968</phone>
</contact>

5.3.2 JavaScript Object Notation (JSON)

JSON is a relatively young technology compared to XML. It offers an alternative method for
serializing data, characterized by the presence of curly braces in the data. It generally
serializes data to a shorter form than the equivalent XML, which has led to its reputation as an
efficient data format. In 5.3.3, “Key differences between XML and JSON” on page 52,
81characters are used for markup of the same application data that required 160 characters
for XML markup in Example 5-1.

Example 5-2 Example JSON data, 81 characters of markup, 85 characters of application data

{
 "name": "International Business Machines Corp.",
 "address": {
 "street": "1 New Orchard Road",
 "city": "Armonk",
 "state": "NY",
 "code": "10504-1722"
}
"phone": "800-426-4968"
}

JSON is particularly associated with the JavaScript programming language, which is popular
as a language for mobile devices. It is often the data format of preference among developers
of mobile applications. CICS TS has supported JSON-based web services since version 4
release 2, through use of the CICS TS Feature Pack for Mobile Extensions.

JSON does not have an equivalent to the WSDL document used in XML, so it can be difficult
to document the characteristics of a JSON interface in a formal fashion. A JSON schema
language exists for defining the syntax of JSON data, but it is not widely implemented
throughout the industry.

JSON does not have the wealth of supporting specifications that are available for XML web
services. This can limit its usefulness for some tasks but makes it more efficient for others.

JSON enables (but does not require) a Representational State Transfer (RESTful) interface to
data. Typical CICS TS programs implement a remote procedure call that accepts input,
performs an action, and returns output. This pattern is referred to as request-response.
Chapter 5. Connecting mobile devices to CICS Transaction Server 51

A RESTful interface is quite different. It is data-driven, where each data fragment is
referenced through its own URI, and the only actions that can be performed on the data are
Create, Read, Update, and Delete. These actions map to the underlying HTTP methods of
POST, GET, PUT, and DELETE. This concept is rather exotic under CICS TS, but it is widely used
among JSON service providers. The association between JSON and RESTful services is
sufficiently strong that the terms are sometimes used interchangeably.

5.3.3 Key differences between XML and JSON

The following list explains the key differences between the two formats, as implemented in
CICS TS:

� The content of a SOAP message is XML data, whereas a JSON message contains JSON
data. JSON and XML are different encoding mechanisms for describing structured data.

� JSON tends to be a more efficient encoding mechanism, so a typical JSON message is
smaller than the equivalent XML message.

� JSON is easy to integrate in JavaScript applications, but XML is not. This difference
makes JSON a preferred data format for many mobile application developers.

� SOAP provides a mechanism to add headers to a message and a family of specifications
for qualities of service. For example, WS-Security defines sophisticated rules for securing
SOAP messages, and WS-AtomicTransactions defines a distributed two-phase commit
protocol. JSON does not have this mechanism. Instead, it relies on the services of the
underlying HTTP network protocol. This reliance results in fewer options for securing and
configuring a workload.

� SOAP web services are described by using WSDL documents. JSON web services are
structured less formally. They tend to be loosely coupled and rely on informal
documentation, often including examples of serialized data.

� SOAP has a larger ecosystem of related tools that can help with application development.

� SOAP web services have an explicit error format that involves using SOAPFault
messages. There is no equivalent for JSON.

� SOAP web services support use of both HTTP and IBM MQ based messaging, whereas
JSON requires HTTP.

� JSON web services support both RESTful and request-response driven interfaces, but
SOAP supports only the request-response interface.

� The comparative performance characteristics of the two technologies are difficult to
predict. The smaller payload of a JSON message does not necessarily result in a less
costly or more efficient web service. The business cost is further complicated by the
deployment technologies, which involves the use of IBM CICS Transaction Server for z/OS
Value Unit Edition, IBM Mobile Workload Pricing for z/OS, and IBM System z Application
Assist Processors.

Business requirements are likely to dictate which data serialization protocol is used in a
project. In general, SOAP tends to be more suitable for server-to-server communication (for
quality of service), and JSON is more suitable for mobile device-to-server communication (for
ease of client-side development). In some deployment scenarios, JSON is be used between
the mobile device and an intermediate server, and SOAP is used for further server-to-server
communication.
52 A Software Architect’s Guide to Java Workloads in IBM CICS Transaction Server

5.4 CICS TS web service development strategies

Enabling a CICS TS program to be called from a mobile device often involves exposing it as a
remotely callable web service.

There are two main service enablement techniques used to do this. The first is called
bottom-up, and it involves exposing an existing asset to new callers. The second is called
top-down, which involves implementing a new service that conforms to the requirements of
an external specification. A third, hybrid scenario also exists, called meet-in-the-middle.

In each case, a transformation service is used to convert the application data to and from the
format used for data interchange. The data interchange format can be either JSON or XML.
The application data is structured in the format used by the application (for example, as
described by a COBOL copybook).

5.4.1 Bottom-up service enablement

In this scenario, a web service (based on either JSON or XML) is generated from an existing
program. The programmatic interface to the existing program (such as a COBOL copybook) is
processed by using tools, and transformational metadata or programs are produced. The
specifics of how this works and the artifacts produced vary by scenario. But the general
concept is common to both: You have an existing asset that needs exposing as a web service,
and the tools make this possible without changing the existing application.

In practice, this is not always achievable. There can be characteristics of an existing
application that make it unsuitable for use as a web service. For example, it might have a
3270 interface, rely on the existence of a CICS TS terminal, or use shared memory for
cross-program communication. A program’s interface might rely on data types that are not
supported by the tools, such as pointers, or redefined data structures.

In most cases, an existing program can be exposed as a web service, either without changes
or with minimal additional effort.

5.4.2 Top-down service enablement

In this scenario, a web service (either JSON- or XML-based) is generated from a specification
document, typically either a WSDL document or a JSON-Schema. Tools are used to generate
new application data structures from that specification. A new application is then written that
uses the generated data structures and interacts with the existing programs.

This generally results in a better web service than in a bottom-up approach. The interface is
defined according to the requirements of the service, not the existing implementation.
Services can be designed to support version control and to evolve with minimal disruption for
existing callers.

An important variation of a top-down scenario involves creation of a requester or client
program in CICS TS. This program can invoke a remote web service that is hosted outside of
CICS TS. Requester mode scenarios can also be considered as part of a new workload if the
transformation capability is hosted in a JVM server. One method that can be used is to have a
CICS program link to a stub program that is hosted in IBM CICS Transaction Server for z/OS
Value Unit Edition, and the stub can invoke the remote web service. The stub must either be
hosted in a JVM server or drive a transformation service that is hosted in a JVM server to be
a candidate for approval for the Value Unit Edition.
Chapter 5. Connecting mobile devices to CICS Transaction Server 53

5.4.3 Meet-in-the-middle service enablement

This is a hybrid scenario that can combine the best features of both bottom-up and top-down
service enablement. It involves mapping an existing program to a defined interface.

A typical meet-in-the-middle scenario involves generating a web service interface to an
existing application by using bottom-up enablement techniques. This is followed by a manual
modification of the generated service description documents. The modifications might include
renaming fields so that they will make sense to an external developer, removing unnecessary
content, adding additional validation rules, adding versioning information, and so on.

After a perfected interface is established, the existing program must be integrated with the
new interface. This might involve the use of tools to map between the two formats or the
generation of new application structures by using top-down techniques. The application might
need to be changed to implement the new interface. Subsequent maintenance of the web
service is performed top-down from the service description document.

This technique tends to involve significantly more effort than a pure bottom-up enablement
strategy, so it is not popular for that reason. But it results in a better quality of web services.

5.5 IBM MobileFirst Platform Foundation and CICS TS

The recommended strategies for integrating mobile devices into a secure and
high-performance CICS TS environment are described in the IBM Redbooks publication titled
Implementing IBM CICS JSON Web Services for Mobile Applications, SG24-8161:

http://www.redbooks.ibm.com/abstracts/sg248161.html

A key consideration includes the use of IBM MobileFirst Platform Foundation (formerly known
as IBM Worklight®), which provides a comprehensive platform on which to build, test, run,
and manage mobile web applications. It can help reduce both application development and
maintenance costs, improve time to market, and enhance mobile application governance and
security.

Figure 5-2 on page 55 illustrates a MobileFirst server being used to mediate between the
mobile devices and CICS TS.
54 A Software Architect’s Guide to Java Workloads in IBM CICS Transaction Server

http://www.redbooks.ibm.com/abstracts/sg248161.html?Open
http://www.redbooks.ibm.com/abstracts/sg248161.html

Figure 5-2 IBM MobileFirst server as an intermediate node between mobile devices and CICS TS

The MobileFirst server acts as an aggregation point, allowing many devices to share a single
connection to CICS TS. It also provides device abstraction services for the application
developer, helps ensure the physical security of the devices, and can provide protocol
conversion services for CICS TS.

The mobile devices can communicate with the MobileFirst server by using JSON format data,
and the MobileFirst server can communicate with CICS TS by using whatever mechanism is
most convenient, including both JSON- and SOAP-based web services.

The MobileFirst capabilities for mobile application security are explained in the IBM Redbooks
publication titled Securing Your Mobile Business with IBM Worklight, SG24-8179:

http://www.redbooks.ibm.com/abstracts/sg248179.html
Chapter 5. Connecting mobile devices to CICS Transaction Server 55

http://www.redbooks.ibm.com/abstracts/sg248161.html?Open
http://www.redbooks.ibm.com/abstracts/sg248161.html?Open
http://www.redbooks.ibm.com/abstracts/sg248179.html

5.6 IBM DataPower and CICS TS

An IBM WebSphere DataPower® appliance is often deployed alongside CICS TS to secure
web services workloads.

DataPower can secure mobile traffic before it arrives at CICS TS and validate the JSON and
XML data at high speeds, acting as a form of firewall. It can also be used in combination with
IBM MobileFirst to provide authentication services for mobile devices.

The combination of DataPower and MobileFirst to secure mobile workloads is described in
detail the IBM Redbooks publication titled Securing Your Mobile Business with IBM Worklight,
SG24-8179, cited previously.

Figure 5-3 illustrates DataPower being used to authenticate users and secure communication
between mobile devices and the MobileFirst server.

Figure 5-3 IBM DataPower appliances authenticate user sand protect communication to the MobileFirst server

The DataPower capabilities for integrating and securing web services for CICS TS are
explained in the IBM Redbooks publication titled Set Up Security and Integration with the
DataPower XI50z for zEnterprise, SG24-7988:

http://www.redbooks.ibm.com/abstracts/sg247988.html

5.7 Configuration for high availability

Configuring a CICS infrastructure for high availability involves two primary techniques:

� Using TCP/IP load balancing to distribute work across several routing regions
� Using a distributed program link to route work to a suitable application-owning region

Note: Additional techniques may be available for deployment scenarios that involve the
use of WebSphere Application Server Liberty profile.
56 A Software Architect’s Guide to Java Workloads in IBM CICS Transaction Server

http://www.redbooks.ibm.com/abstracts/sg248161.html?Open
http://www.redbooks.ibm.com/abstracts/sg248161.html?Open
http://www.redbooks.ibm.com/abstracts/sg248161.html?Open
http://www.redbooks.ibm.com/abstracts/sg248161.html?Open
http://www.redbooks.ibm.com/abstracts/sg247988.html

Figure 5-4 illustrates a workload being balanced across a series of CICS routing regions,
each of which hosts a transformation service for new workload and routes the work to a group
of application-owning regions (AORs) in another LPAR.

Figure 5-4 Workload balancing across multiple regions

These techniques are suitable for use in both of the implementation scenarios described in
Chapter 6, “Mobile devices and CICS Liberty JVM server” on page 59 and in Chapter 7,
“Mobile devices and CICS TS Java” on page 67.

The IBM Redbooks publication titled CICS Web Services Workload Management and
Availability, SG24-7144, explores the CICS architectures for supporting high availability of
web services:

http://www.redbooks.ibm.com/abstracts/SG247144.html

The two chapters that follow investigate two different technologies that are suitable for hosting
Java-based transformation services:

� Chapter 6, “Mobile devices and CICS Liberty JVM server” on page 59
� Chapter 7, “Mobile devices and CICS TS Java” on page 67

z/OS LPAR

AOR

CICS

Existing
Business
Logic

zNALC APAR

SYSPLEX
Distributor

CICS Router

JVMSERVER

CICS

Transformation
Service
Chapter 5. Connecting mobile devices to CICS Transaction Server 57

http://www.redbooks.ibm.com/abstracts/SG247144.html

58 A Software Architect’s Guide to Java Workloads in IBM CICS Transaction Server

Chapter 6. Mobile devices and CICS Liberty
JVM server

This chapter describes hosting Java-based web services in IBM CICS Transaction Server
(TS), using CICS Liberty JVM server. These web services can support either SOAP or JSON
data encoding formats, and they use JAX-WS and JAX-RS technologies.

This information builds on the information in Chapter 5, “Connecting mobile devices to CICS
Transaction Server” on page 47, and we cover the following topics:

� 6.1, “Hosting transformation services in CICS Liberty JVM server” on page 60
� 6.2, “z/OS Connect and CICS Liberty JVM server” on page 63
� 6.3, “Connectivity from Java to CICS TS” on page 64
� 6.4, “Security considerations” on page 64
� 6.5, “Other considerations” on page 65

6

© Copyright IBM Corp. 2014. All rights reserved. 59

6.1 Hosting transformation services in CICS Liberty JVM server

At the time of writing, there are two main options for hosting a data transformation service in
CICS Liberty JVM server within CICS TS. The first uses a technology called the Java API for
XML Web Services (JAX-WS), and the second uses the Java API for RESTful Web Services
(JAX-RS). These technologies implement SOAP and JSON for Java applications.

Figure 6-1illustrates a transformation service wrapper hosted in CICS Liberty JVM server. It is
used to expose an existing application to a new workload initiated from mobile devices.

In both scenarios, a generated Java interface is hosted in a CICS Liberty JVM server
environment, and custom control logic is written to interface a Java program with the existing
CICS TS programs.

Figure 6-1 Hosting JAX-WS or JAX-RS services in a CICS Liberty JVM server environment

6.1.1 Java API for XML Web Services (JAX-WS)

The Java API for XML Web Services (JAX-WS) is a standard component of Java. It is
available on all platforms supported by Java, and it allows Java applications to implement
SOAP-based web services.

It supports both bottom-up service enablement patterns (where a WSDL interface is
generated from an existing Java class) and top-down enablement patterns (where Java
classes are generated from an existing WSDL document). (See 5.4.1, “Bottom-up service
enablement” on page 53 and 5.4.2, “Top-down service enablement” on page 53 for more

zNALC LPAR z/OS LPAR

CICS Value Unit Edition CICS

JAX-RS / JAX-WS
Transformation Service

JVMSERVER

Control code

z/OS z/OS

WebSphere Liberty Profile

Application Program

DPL

Mobile
Device
60 A Software Architect’s Guide to Java Workloads in IBM CICS Transaction Server

information.) It also supports Requester mode scenarios, where a CICS TS Java program is
used to invoke a remote SOAP web service.

JAX-WS provides the tools required to bind Java programs to WSDL, and the runtime
transformation service required to perform the data transformations. This transformation
service is implemented in Java, so is a candidate for approval for IBM CICS Transaction
Server for z/OS Value Unit Edition.

Provider mode JAX-WS applications are a fully supported component of the CICS Liberty
JVM server environment in CICS TS. Requester mode applications are also supported under
CICS Liberty JVM server, but are of less value due to the inability to link to a Liberty
application from a traditional CICS TS program. Requester mode applications can be hosted
in a regular non-Liberty JVM server in CICS TS.

Characteristics of a JAX-WS application in CICS Liberty JVM server
A JAX-WS application is, by definition, a Java application. This in turn implies that a JAX-WS
application cannot use bottom-up development techniques to expose an existing non-Java
CICS TS application as a SOAP web service. There will always be some form of
meet-in-the-middle technique required to wrapper an existing non-Java program with a
JAX-WS interface.

This will require additional application development effort compared to some other service
enablement strategies, but it can be worth considering. There are several significant benefits:

� The JAX-WS service is a candidate for approval to be hosted in IBM CICS Transaction
Server for z/OS Value Unit Edition.

This can be relevant for business reasons, independent of the technical considerations.

� JAX-WS provides a complete and concise mapping of WSDL to Java.

If you’ve struggled with mapping complex WSDL documents and XML schema into
COBOL (or other native programming languages), JAX-WS can provide an alternative
path to Service Enablement.

Some XML constructs are inherently difficult to map into COBOL style data. Examples
include inheritance hierarchies, recursive data structures, and cross-references. Java is
more naturally suited to representing such information.

� JAX-WS is a cross-platform technology

JAX-WS is a standard part of Java, and is supported by many vendors. The skills required
to create JAX-WS services are not CICS TS specific.

An example JAX-WS application deployed using CICS Liberty JVM server is available in the
CICSdev Community on IBM developerWorks:

“JAX-WS and JAXB support in CICS TS V5.2 Liberty JVM server,” a blog entry by Mark
Cocker

http://ibm.co/1gceyS0
Chapter 6. Mobile devices and CICS Liberty JVM server 61

http://ibm.co/1gceyS0

Example 6-1 illustrates a simple JAX-WS application.

Example 6-1 Example of a JAX-WS Hello World application

package org.example;
import javax.jws.*;

@WebService
public class TextService
{
 @WebMethod public String decorateText(String text)
 {
 return "You said: '" + text + "'";
 }
}

6.1.2 Java API for RESTful Web Services (JAX-RS)

The Java API for RESTful Web Services is also a standard component of Java but not
distributed as part of the Java Software Development Kit (SDK). A reference implementation
is available on all platforms that are supported by Java. It allows Java applications to
implement JSON and XML-based web services, both in RESTful and request-response use
patterns. In this document we will consider JAX-RS for enabling JSON connectivity.

It supports the bottom-up service enablement patterns, where a JSON interface is generated
from an existing Java class (see “Bottom-up service enablement” on page 53). It also
supports Requester mode scenarios, where a CICS TS Java program is used to invoke a
remote JSON web service.

JAX-RS provides the runtime service that is required to perform the data transformations.
This transformation service is implemented in Java, and is a candidate for approval to be
hosted in IBM CICS Transaction Server for z/OS Value Unit Edition.

Provider mode JAX-RS applications are a fully supported component of the CICS Liberty
JVM server environment in CICS TS. Requester mode applications are also supported under
CICS Liberty JVM server, but are of less value due to the inability to LINK to a Liberty
application from a traditional CICS TS program. Requester mode applications can be hosted
in a regular non-Liberty JVM server in CICS TS.

Characteristics of a JAX-RS application in CICS Liberty JVM server
JAX-RS applications are very similar to JAX-WS applications, they share many of the same
characteristics. For example, a JAX-RS application must be written in Java. This means (as
with JAX-WS) that additional application code must be written in Java to make a JAX-RS
application communicate with any non-Java CICS TS programs. A traditional non-Java CICS
TS program cannot be exposed as a JSON web service using JAX-RS in a pure bottom-up
fashion.

The benefits of JAX-RS include:

1. The JAX-RS service is a candidate to be hosted in IBM CICS Transaction Server for z/OS
Value Unit Edition

This can be relevant for business reasons, independent of the technical considerations.
62 A Software Architect’s Guide to Java Workloads in IBM CICS Transaction Server

2. JAX-RS provides a simple mechanism to expose Java programs as JSON web services.

Customized mapping information can be stored within the Java application using a library
of Java Annotations.

3. JAX-RS is a cross-platform technology

JAX-RS is a standard part of Java, and is supported by many vendors. The skills required
to create JAX-RS services are not CICS TS specific.

An example RESTful JAX-RS application deployed by using CICS Liberty JVM server is
available in the CICSdev Community on IBM developerWorks:

Writing RESTful web services using a CICS Liberty JVM Server - Part 2, a blog entry by
Daniel Fitzgerald

http://ibm.co/12X3B72

Example 6-2 illustrates a simple JAX-RS application.

Example 6-2 Example of a JAX-RS Hello World application

package org.example;
import javax.ws.rs.*;
import javax.ws.rs.core.*;

@Path("/json/example")
public class TextService2
{
 @POST
 @Path("/post")
 @Consumes(MediaType.APPLICATION_JSON)
 @Produces(MediaType.APPLICATION_JSON)
 public String decorateText(String text)
 {
 return "You said: '" + text + "'";
 }
}

6.2 z/OS Connect and CICS Liberty JVM server

IBM WebSphere Liberty z/OS Connect is software that enables z/OS systems such as CICS
TS and IMS to participate in a Mobile computing environment. It runs within the WebSphere
Application Server Liberty Profile and provides a JSON-based interface between mobile and
cloud devices and back-end systems.

z/OS Connect provides an alternative mechanism for wrapping CICS TS assets with a JSON
interface. However, at time of writing it cannot be hosted in CICS Liberty JVM server. This
limits its relevance to an IBM CICS Transaction Server for z/OS Value Unit Edition
environment.

For more information about z/OS Connect, see the IBM WebSphere Application Server for
z/OS Liberty Profile web page:

http://www.ibm.com/developerworks/downloads/ws/waszosliberty/
Chapter 6. Mobile devices and CICS Liberty JVM server 63

http://ibm.co/12X3B72
http://www.ibm.com/developerworks/downloads/ws/waszosliberty/

IBM released a statement of direction for z/OS Connect as part of the CICS Transaction
Server for z/OS V5.2 announcement letter. See the web page titled “IBM CICS Transaction
Server for z/OS V5.2 takes service agility, operational efficiency, and cloud enablement to a
new level” (IBM United States Software Announcement 214-107, April 7, 2014):

http://ibm.co/1vnT0Oq

That statement reads:

IBM intends to deliver IBM WebSphere Liberty z/OS Connect (z/OS Connect) as a
common program component of WebSphere Application Server for z/OS, IMS Enterprise
Suite for z/OS, CICS Transaction Server for z/OS, and CICS TS Transaction Gateway.
z/OS Connect is intended to provide a simplified, secure, and scalable gateway
functionality to route web, cloud, and mobile application traffic that accesses applications
provided by the aforementioned z/OS products, as well as z/OS batch and z/OS UNIX
System Services applications. z/OS Connect intends to offer: (i) a fast onramp interface to
z/OS applications by providing a common access mechanism based on RESTful services;
(ii) tools to allow a cloud or mobile developer to define secure enterprise connectivity
without the need for extensive code development or knowledge of System z.

No further information was available at the time of writing, but z/OS Connect might become
relevant to IBM CICS Transaction Server for z/OS Value Unit Edition at some point after the
publication of this book.

6.3 Connectivity from Java to CICS TS

In both of the scenarios described, the JAX-RS or JAX-WS application interacts with the
services and programs in CICS TS. They do this by using the JCICS application programming
interface (API). Application code is written in Java that converts between the Java data format
and the format used by other CICS TS programs. For example, the Java application might
need to construct a comm area to pass to a COBOL program or interpret the contents of a
CICS TS container.

The techniques for interacting with structured records from Java are described in 4.2.1, “Java
access to records and their fields” on page 37.

6.4 Security considerations

Security of web services (both JSON and SOAP) is a broad topic, encompassing many
considerations.

Mobile devices are usually connected to CICS TS by using an intermediate proxy. The
security configuration might be different between the mobile device and the proxy and
between the proxy and CICS TS. Mobile devices can benefit from the device security
characteristics of IBM MobileFirst, formerly called IBM Worklight (see 5.5, “IBM MobileFirst
Platform Foundation and CICS TS” on page 54), and the authentication and firewall
capabilities of IBM DataPower (see 5.6, “IBM DataPower and CICS TS” on page 56).

CICS Liberty JVM server supports several mechanisms by which a proxy can be
authenticated to CICS TS. These are described in 2.5, “Security” on page 20.
64 A Software Architect’s Guide to Java Workloads in IBM CICS Transaction Server

http://ibm.co/1vnT0Oq

At the time of writing, CICS Liberty JVM server does not support the use of the WS-Security
specification for SOAP-based web services nor OAuth-based authentication for mobile
devices. But most of the benefits of these protocols can be experienced through the
combination of IBM MobileFirst or IBM DataPower with CICS TS.

6.5 Other considerations

There are many ways to call an existing CICS TS program from a mobile device. Hosting a
transformation service in CICS Liberty JVM server offers the advantage that the associated
transformation work is a candidate for approval for use with IBM CICS Transaction Server for
z/OS Value Unit Edition. However, other options are available, including the use of a Java
pipeline as described in Chapter 7, “Mobile devices and CICS TS Java” on page 67.

One of the limitations of the CICS Liberty JVM server approach is that the transformation
work is not as tightly integrated with CICS TS as with some of the other options. For example,
the CICS Liberty JVM server environment listens on its own TCP/IP socket, rather than using
the CICS native sockets listener. This affects the techniques that must be used to investigate
problems.

The CICS Liberty JVM server environment does not use a CICS TS PIPELINE resource and
does not share the same characteristics that might be familiar from that environment. For
example, the CICS TS supplied handler programs that implement the various SOAP web
services specifications, such as WS-AtomicTransactions and WS-Security, are not available
to use. Another difference is that the CICS TS SOAPFault API is not available for native CICS
TS applications to use. However, the pattern of wrapping existing CICS TS assets with a
CICS Liberty JVM server hosted transformation service can be very useful.
Chapter 6. Mobile devices and CICS Liberty JVM server 65

66 A Software Architect’s Guide to Java Workloads in IBM CICS Transaction Server

Chapter 7. Mobile devices and CICS TS Java

This chapter describes hosting Java-based web services in an IBM CICS Transaction Server
(TS) Java virtual machine (JVM) server without using CICS Liberty JVM server. These web
services run in a Java-based pipeline in CICS and use the CICS supplied data transformation
service to interact with CICS programs.

This chapter builds on the information in Chapter 5, “Connecting mobile devices to CICS
Transaction Server” on page 47, and covers the following topics:

� 7.1, “Hosting transformation services in CICS TS Java” on page 68
� 7.2, “Characteristics of CICS data transformation” on page 69
� 7.3, “The Java-based pipeline” on page 69
� 7.4, “Security considerations” on page 70
� 7.5, “Other considerations” on page 70

7

© Copyright IBM Corp. 2014. All rights reserved. 67

7.1 Hosting transformation services in CICS TS Java

CICS has had the ability to automatically transform XML into application data as part of a web
service since CICS Transaction Server V3.1. The ability to host this transformation service
within a JVM server resource was introduced in CICS Transaction Server V4.2. This
Java-based transformation service was extended to support JSON as part of the CICS
Transaction Server Feature Pack for Mobile Extensions, V1.0. The Feature Pack is available
for CICS Transaction Server V4.2 and V5.1. The capability is integrated into CICS from CICS
Transaction Server V5.2.

The JVM server-based environment for CICS web services is referred to as a Java-based
pipeline. A Java-based pipeline that exposes an existing program to mobile devices is a
candidate for approval for hosting in IBM CICS Transaction Server for z/OS Value Unit
Edition.

Figure 7-1 illustrates a Java-based pipeline being used to expose an existing CICS program
as an XML or JSON web service.

Figure 7-1 Hosting the CICS supplied transformation service in a Java pipeline

zNALC LPAR z/OS LPAR

CICS Value Unit Edition CICS

CICS Supplied
Transformation Service

JVMSERVER

z/OS z/OS

Java PIPELINE

Application Program

WEBSERVICE

WSBind
File

DPL

Mobile
Device
68 A Software Architect’s Guide to Java Workloads in IBM CICS Transaction Server

7.2 Characteristics of CICS data transformation

The Java-based CICS data transformation service facilitates the conversion of XML or JSON
into structured application data and back again. It does this by using pregenerated metadata
(a WSBind file) that instructs CICS in how to transform the data. The metadata is prepared in
advance, using tools.

The application development aspects of how this works are described in the IBM Redbooks
publication titled Application Development for CICS Web Services, SG24-7126:

http://www.redbooks.ibm.com/abstracts/sg247126.html

The JSON-specific characteristics of this process are described in the IBM Redbooks
publication titled Implementing IBM CICS JSON Web Services for Mobile Applications,
SG24-8161:

http://www.redbooks.ibm.com/abstracts/sg248161.html

The CICS supplied data mapping service is popular, because most existing CICS programs
can be exposed as web services (either JSON or XML) without application changes and
without the need for a new wrapper program to be written. The technology involved has also
been adapted for other IBM products, including IBM Rational Developer for System z (which
provides application development support for CICS web services), CICS Transaction
Gateway (which supports hosting CICS WSBind files for JSON from version 9.1), and
WebSphere Application Server Liberty profile (which supports hosting WSBind files for
JSON).

The CICS data mapping technology can be used for both bottom-up development scenarios,
and top-down scenarios, and it can be used in both Provider mode and Requester mode. For
more informaiton about these development scenarios, see 5.4, “CICS TS web service
development strategies” on page 53.

The CICS data mapping tools and the regular non-Java data transformation service have
been proven in many CICS web service customer deployments since CICS Transaction
Server V3.1.

7.3 The Java-based pipeline

A Java-based pipeline in CICS is very similar to a regular CICS pipeline resource (of the type
that has been available for hosting web services from CICS Transaction Server V3.1). Its
main differentiating characteristic is that it is implemented in Java, and is therefore eligible to
be considered for approval for IBM CICS Transaction Server for z/OS Value Unit Edition.

Converting a traditional CICS pipeline to a Java-based pipeline involves:

� the configuration of a suitable JVM server in CICS

� minor changes to the pipeline configuration file

� (optionally) changing any pipeline handler programs to use Java

This can be a convenient mechanism for adapting an existing CICS web services
infrastructure, though it is unlikely to perform as well as the native CICS implementation. If a
JSON interface is required, consider using the capabilities of IBM z/OS Connect, see 6.2,
“z/OS Connect and CICS Liberty JVM server” on page 63.
Chapter 7. Mobile devices and CICS TS Java 69

http://www.redbooks.ibm.com/abstracts/sg248161.html?Open
http://www.redbooks.ibm.com/abstracts/sg248161.html?Open
http://www.redbooks.ibm.com/abstracts/sg247126.html
http://www.redbooks.ibm.com/abstracts/sg248161.html

The Java-based pipeline takes XML or JSON data, and automatically converts it to structured
application data, using instructions found within the WSBind file. It then LINKs to the target
application program passing the transformed data as input, and finally converts the response
back to XML or JSON to return to the remote caller. This can provide a significant amount of
value for relatively little effort.

7.4 Security considerations

Security of web services (both JSON and SOAP) is a broad topic, encompassing many
considerations. As with the CICS Liberty JVM server scenario in 6.4, “Security
considerations” on page 64, both IBM MobileFirst and IBM DataPower can be used to provide
additional capabilities beyond those natively available through CICS.

CICS supports a wide range of Security protocols for XML-based web services, including
WS-Security, and WS-Trust, and in CICS Transaction Server Version 5.2 this is extended to
include aspects of the SAML and Kerberos protocols. CICS also supports the z/OS identity
propagation protocol.

General security considerations are described further in IBM Redbooks publication
SG24-7658-00 Securing CICS Web Services. It is available here:

http://www.redbooks.ibm.com/abstracts/sg247658.html

The Identity Propagation protocol is described in IBM Redbooks publication SG24-7850-00
z/OS Identity Propagation. It is available here:

http://www.redbooks.ibm.com/abstracts/sg247850.html

Many deployments of CICS web services include the use of an IBM DataPower appliance for
authentication and as an XML firewall. A trust relationship is configured between CICS and
the appliance by using a client-certified transport connection, and the user ID associated with
the appliance is granted surrogate authority to assert the identity of the user. The identity of
this user is passed to CICS from the appliance using WS-Security. This is probably the single
most common configuration for authentication with XML-based web services for CICS:
DataPower is responsible for authentication, and CICS is configured to trust DataPower to
supply the identity of the user.

7.5 Other considerations

There are many ways to call an existing CICS TS program from a mobile device. Hosting a
transformation service in a Java-based pipeline offers the advantage that the associated
transformation work is a candidate for approval for use with IBM CICS Transaction Server for
z/OS Value Unit Edition. However, other options are available, including the use of CICS
Liberty JVM server as described in Chapter 6, “Mobile devices and CICS Liberty JVM server”
on page 59.

One of the limitations of the Java-based pipeline is that the associated JVM server will not be
suitable for hosting OSGi applications or CICS Liberty JVM server. It requires a special JVM
server of its own.

The transformation service for JSON web services may be better hosted in the IBM CICS
Transaction Gateway V9.1 or in WebSphere Application Server Liberty profile.
70 A Software Architect’s Guide to Java Workloads in IBM CICS Transaction Server

http://www.redbooks.ibm.com/abstracts/sg247658.html
http://www.redbooks.ibm.com/abstracts/sg247850.html

Part 4 IBM Operational
Decision Manager

This section introduces the benefits of decision management for the enterprise. It explains
how IBM Operational Decision Manager for z/OS allows existing IBM CICS Transaction
Server COBOL and PL/I applications to use decision management as a new workload in
CICS TS.

The following chapters are included in this section:

� Chapter 8, “Decision management integrated in IBM CICS Transaction Server” on
page 73

� Chapter 9, “Implementing decision management in CICS TS” on page 85

Part 4
© Copyright IBM Corp. 2014. All rights reserved. 71

72 A Software Architect’s Guide to Java Workloads in IBM CICS Transaction Server

Chapter 8. Decision management integrated
in IBM CICS Transaction Server

This chapter introduces the concept of decision management. It also describes how
IBM Operational Decision Manager for z/OS is a candidate for approval for running within
IBM CICS Transaction Server for z/OS Value Unit Edition to provide decision management for
CICS TS COBOL and PL/I applications.

The following topics are covered in this chapter:

� 8.1, “Introduction to decision management” on page 74
� 8.2, “IBM Operational Decision Manager for z/OS” on page 75
� 8.3, “CICS TS rule-owning region architecture” on page 81
� 8.4, “Decision management summary” on page 82

8

© Copyright IBM Corp. 2014. All rights reserved. 73

8.1 Introduction to decision management

Making decisions has always been at the center of business. For instance, banks must decide
who they will lend money to, insurance companies must decide who they will insure, retailers
must decide when promotions will occur and who will be eligible for them. Every business
must make decisions to be successful and today’s businesses must make a startling number
of decisions every day.

A customer’s demand for a flawless, seamless, instant experience means businesses are
making more decisions, they have less time to make them, and they need to get those
decisions right the first time. This requires decisions that are consistent with business policy
and can be made at machine speed, without manual processes and human involvement.

8.1.1 Common business decisions that require managing

There are, generally speaking, three types of decisions found in most businesses:

� Decisions that help increase revenue:

– This type includes decisions that are used by marketing and sales to make targeted
offers, based on customer profiles, demographics, and analytical models.

– For example: Is a customer eligible for a certain promotion or a cross-sell or up-sell
opportunity? Should a store discount the price of a product at the end of the day?

� Decisions about consistency and compliance with regulations:

– This type of decision can be found in all industries, such as financial, insurance, and
government sectors.

– For example: Are there prohibitions against a customer buying a certain quantity of a
product? Is a customer eligible to make a certain purchase, based on where she is
located?

� Decisions that reduce and mitigate risk:

– This type of decision includes decisions that protect the company and the customers.

– For example: Does the customer who just filled out a loan application online meet the
criteria to be approved?

Businesses must make one or all of these types of decisions many times a day and ensure
that they are made correctly and consistently, according to their business policies.

8.1.2 Where most decisions are made today

The traditional approach to decision making requires a business analyst to understand the
business policies and create a requirements document that defines the decisions to be made.
Then, one or more software developers take the requirements and code or embed the
decisions in the various application programs that support the business. The development is
then followed by a lengthy testing process before the new decisions become live in
production.

Unfortunately, the decisions are now hidden in the code of one or more programs, and over
time as additional changes are added to the business policy, the code becomes more
complex, making it difficult to change, hard to visualize and nearly impossible to manage. The
decisions may change frequently or rarely and changing a program to change the decision,
testing it, and getting it into production is not fast enough in today’s business environment.
74 A Software Architect’s Guide to Java Workloads in IBM CICS Transaction Server

This scenario can be avoided by implementing a decision management solution that takes the
decisions out of code and places them in a central repository. This makes the decisions more
flexible, visible, auditable and manageable. This is illustrated in Figure 8-1:

Figure 8-1 The decision logic is moved out of code and into Decision Manager

Not all decisions are equal, and some are more applicable for decision management than
others. The following decisions are most appropriate for decision management:

� Decisions that must be changed frequently to support the business

Decision management avoids costly application code changes.

� Decisions that are duplicated in multiple applications running on multiple platforms

Decision management implements the decision once and stores it centrally to be called
from multiple applications.

� Decisions that must be visible for business purposes

Decision management allows decisions to be shared easily with lines of business or
regulatory auditors.

The next section introduces IBM Operational Decision Manager for z/OS and explains how it
can be used to implement decision management on IBM z/OS systems in CICS TS.

8.2 IBM Operational Decision Manager for z/OS

Operational Decision Manager for z/OS provides a smarter way of dealing with business
decisions. It helps organizations gain more control over the business decisions that take
place in their enterprise applications. Businesses that use Operational Decision Manager for
z/OS will simplify their ability to change decisions in enterprise applications. This enables
them to cut costs and cycle times, improve their agility and time to market, and enhance their
documentation of business decisions, as well as the governance of those decisions.

Operational Decision Manager for z/OS delivers these advantages to enterprise users
because it enables separation of the decision logic from business applications and
processes.
Chapter 8. Decision management integrated in IBM CICS Transaction Server 75

8.2.1 Operational Decision Manager components

Operational Decision Manager for z/OS includes four main components that work together to
provide a full decision management experience:

� Rule Designer is used as the starting point to create the model on which the business
decisions are written. Rule Designer is an Eclipse-based development toolkit for business
decisions. It is installed on a Microsoft Windows or Linux workstation.

� Decision Center is used as a team repository to govern the business decisions and to
write them through a web interface. Decision Center runs on WebSphere Application
Server on z/OS, Linux for System z, or a distributed environment.

� Decision Server is where business decisions are made. API calls are issued from COBOL
and PL/I programs to the Decision Server. The Decision Server has multiple deployment
options, depending on the environment the application that it is running in. These
environments are described in 8.2.4, “Execute decisions by using the Decision Server” on
page 80.

� Rule Execution Server console is a web-based graphical interface to monitor Decision
Servers and to manage the deployed artifacts, such as RuleApps, rule set archives, and
required libraries. It runs in either a stand-alone address space or within WebSphere
Application Server for z/OS.

Figure 8-2 shows the interaction between these components. Rule Designer can create and
synchronize rule projects with the Decision Center. Then, business users can use the
Decision Center to modify, test, and simulate business decisions. The decisions are then
published to the Decision Server by using either the Rule Designer or Decision Center.

Figure 8-2 Operational Decision Manager components working together

Rule Designer must run on a Windows or Linux workstation, but Decision Center can run on
multiple operating systems. This allows flexible deployment patterns, as shown in Figure 8-3.
76 A Software Architect’s Guide to Java Workloads in IBM CICS Transaction Server

Figure 8-3 Decision Center and Decision Server can run on various operating systems

In the next section, the key concepts of the Rule Designer, Decision Center and Decision
Server are explained in more detail.

8.2.2 Create decisions using the Rule Designer

Rule Designer enables the creation of a rule project that contains the Execution Object Model
(XOM) and the Business Object Model (BOM). It allows a COBOL copybook or PL/I include
file to be used as the starting point for these models as shown in Figure 8-4 on page 78.
These models are required to allow the authoring of business decisions based on the
business data that is currently being used in the COBOL or PL/I applications.

The Rule Designer can also be used to take an existing rule project based on a Java XOM
and enable it for COBOL or PL/I execution. This is achieved by generating the COBOL
copybook or PL/I include file necessary for the program to execute the existing rule sets.

Note: A recommended approach when using Operational Decision Manager for z/OS is to
run Decision Center on a distributed or Linux on System z platform and deploy remotely to
Decision Server running on z/OS.

Note: Existing rule projects that use a XOM generated from an XSD cannot be enabled for
COBOL or PL/I execution.
Chapter 8. Decision management integrated in IBM CICS Transaction Server 77

Figure 8-4 Cobol copybook or PL/I include files are used to create the business and execution models

After the rule project, XOM and BOM are created, the Rule Designer can be used to start
authoring the initial decisions. The decisions can be expressed using the Business Action
Language (BAL) as shown in Figure 8-5.

Figure 8-5 A business decision expressed in Business Action Language

The BAL provides a simple if-then syntax that is used with a vocabulary to write business
decisions. The BAL defines the syntax and provides constructs for expressing conditions and
actions, and the vocabulary defines the terms that are used in the business decisions.
78 A Software Architect’s Guide to Java Workloads in IBM CICS Transaction Server

Decisions can also be entered using decision tables that provide a graphical way to author
decisions, as illustrated in Figure 8-6.

Figure 8-6 Decision tables are a graphical way to author decisions

Rule Designer checks for overlaps and gaps in decision table conditions as values are
entered in the cells and indicates problems using visual cues. As shown in Figure 8-6, when
there is a problem, the column header displays a warning symbol and the affected cells are
highlighted.

After the BOM, XOM and business decisions have been created, the rule project can be
synchronized with Decision Center for further decision writing, testing, and simulation.

8.2.3 Centrally manage decisions by using the Decision Center

Decision Center is the central hub that coordinates the decision lifecycle across the business
and IT parts of the organization. It provides the ability to write decisions, publish reports on
existing decisions, validate decisions by using testing and simulation, and deploy decisions to
the Decision Server.

Decision Center provides web-based graphical interfaces that allow business users to
achieve these tasks with limited dependence on the IT department. The two graphical
environments provided are:

Business console The preferred environment for business users to take advantage of
social interaction features and change management.

Enterprise console The standard environment for administrators, where deployments can
be performed and administrative features such as project security and
permission management are available.
Chapter 8. Decision management integrated in IBM CICS Transaction Server 79

After decisions have been edited, tested, and simulated in Decision Center and are ready for
execution, they must be deployed to a Decision Server.

8.2.4 Execute decisions by using the Decision Server

Operational Decision Manager for z/OS provides several execution environments in which the
Decision Server can run. They are listed here and illustrated in Figure 8-7.

� zRule Execution Server allows COBOL and PL/I applications to execute decisions in a
stand-alone server address space or embedded within the client application’s address
space.

� zRule Execution Server within the CICS TS JVM server allows CICS TS COBOL and PL/I
applications to execute decisions in the same CICS TS region or in a remote rule-owning
region (ROR).

� Rule Execution Server on WebSphere Application Server for z/OS allows COBOL and
PL/I applications to execute decisions via the WebSphere Optimized Local Adapter (Local
Adapter) interface.

These execution options are illustrated in Figure 8-7.

Figure 8-7 Decision Server on z/OS execution environment option

The benefits of each execution environment are described more thoroughly in the IBM
Redbooks publication titled Flexible Decision Automation for Your zEnterprise with Business
Rules and Events, SG24-8014:

http://www.redbooks.ibm.com/abstracts/sg248014.html

The execution environment that can be considered as a qualifying workload for execution
within IBM CICS Transaction Server for z/OS Value Unit Edition is the zRule Execution Server
running within the CICS TS JVM server.

Note: WebSphere Application Server for z/OS is provided with Operational Decision
Manager for z/OS as a limited license product for Decision Center and Decision Server.
80 A Software Architect’s Guide to Java Workloads in IBM CICS Transaction Server

http://www.redbooks.ibm.com/abstracts/sg248014.html

The next section describes how existing COBOL and PL/I programs running in a CICS TS
application-owning region (AOR) can execute decisions in a rule-owning region (ROR)
running within the JVM server of a IBM CICS Transaction Server for z/OS Value Unit Edition.

8.3 CICS TS rule-owning region architecture

A CICS TS rule-owning region is responsible for hosting Operational Decision Manager for
z/OS within its JVM server. It is then possible for other CICS TS regions running on separate
LPARs to execute decisions within the ROR. This architecture is illustrated in Figure 8-8.

Figure 8-8 CICS TS AORs executing decisions remotely on a zNALC LPAR

CICS TS AORs can communicate with the ROR using a distributed program link (DPL) or by
using IBM CICSPlex® System Manager workload management (WLM). The use of DPL or
WLM allows the decision request to be routed dynamically to the ROR. This provides a highly
available and work load managed solution when two or more RORs are used.

Note: The ability to configure a rule-owning region is available in Operational Decision
Manager for z/OS version 8.5.1 onwards.
Chapter 8. Decision management integrated in IBM CICS Transaction Server 81

Then next section details how this architecture also provides a cost-effective way for the
COBOL and PL/I applications running in the AORs to execute business decisions using
Operational Decision Manager for z/OS running in the ROR.

8.3.1 Cost effectiveness

The cost of Operational Decision Manager for z/OS is based on the size of the LPARs that it is
deployed to, regardless of whether Decision Server is running in a zRule Execution Server,
WebSphere Application Server for z/OS, or CICS Transaction Server for z/OS. The pricing of
Operational Decision Manager for z/OS is not affected by the CICS TS pricing models (VUE
or MLC). The products are sold and priced independently.

However, IBM CICS Transaction Server for z/OS Value Unit Edition (VUE) offers a unique way
to contain the cost of Operational Decision Manager for z/OS for CICS TS applications that
are running in the AORs in two ways:

� The CICS TS rule-owning region allows isolation of the costs of Operational Decision
Manager in a single LPAR.

There is no cost for the Operational Decision Manager for z/OS client libraries running on
the AOR. The client libraries provide the API required to execute rules on the ROR.

Multiple AORs can route decision requests to Operational Decision Manager for z/OS
running in the ROR

� zNALC LPARs are separate from z/OS LPARs and are often smaller. Therefore, the cost of
Operational Decision Manager for z/OS is reduced.

Operational Decision Manager for z/OS also requires an IBM DB2 database to store the
runtime artifacts and to support runtime warehousing features. Another benefit of running
Operational Decision Manager for z/OS within a zNALC LPAR is that DB2 for z/OS Value Unit
Edition can be used to provide this persistence layer, which further reduces the cost of
implementing decision management on z/OS.

8.4 Decision management summary

Making business decisions quickly and correctly is vital for a successful business. This
chapter has shown that taking business logic out of application code and storing it centrally in
a decision management solution increases the agility, visibility, and maintainability of the
business logic.

The recommended method for implementing decision management on z/OS is to use IBM
Operational Decision Manager for z/OS, which can support both COBOL and PL/I
applications running in batch mode, CICS or IMS. Operational Decision Manager for z/OS
can also be deployed to multiple execution environments so that it can be as close to the
applications as possible.

Furthermore, Operational Decision Manager for z/OS is Java-based and can run in the CICS
TS JVM server. Movement of existing business logic from COBOl or PL/I code to Operational
Decision Manager for z/OS is also considered a net new workload. Therefore, it is a strong
candidate for approval for use within IBM CICS Transaction Server for z/OS Value Unit
Edition. This provides a cost-effective way to enable decision management for existing CICS
COBOL and PL/I applications. Also, using rule-owning region architecture allows multiple
application-owning regions to execute decision requests without the cost of running the
Decision Server locally on each AOR.
82 A Software Architect’s Guide to Java Workloads in IBM CICS Transaction Server

In the next chapter, a real-world loan application scenario is introduced. The business rules
are extracted from the existing COBOL program, coded in rule sets using Rule Designer, and
then deployed to Operational Decision Manager for z/OS, running within IBM CICS
Transaction Server for z/OS Value Unit Edition. Then, the API calls are made from the
COBOL program to execute the business logic in the Decision Server.
Chapter 8. Decision management integrated in IBM CICS Transaction Server 83

84 A Software Architect’s Guide to Java Workloads in IBM CICS Transaction Server

Chapter 9. Implementing decision
management in CICS TS

This chapter describes implementing decision management in an IBM CICS integration
scenario that is based on a messaging infrastructure that uses IBM WebSphere MQ. We
review how business decisions are implemented, deployed, and executed within an IBM CICS
Transaction Server for z/OS Value Unit Edition region. The scenario is basd on a loan
approval process.

9

© Copyright IBM Corp. 2014. All rights reserved. 85

9.1 Objectives

Many banks have CICS based core banking services, such as loan approval processes, that
require real-time, nearly instant decisions. The competitive nature of the banking industry
means that banks must quickly adapt to changes in the marketplace. This often poses
challenges when business decisions are embedded in application code. Any changes take a
long time and might cause a financial impact, especially during peak holiday seasons.

IBM Operational Decision Manager for z/OS enables a business to respond to real-time data
with intelligent, automated decisions. IT and business users alike can manage the business
decision logic that is used by operational systems within an organization. The business
decisions are developed and deployed to a Decision Server that runs with the CICS JVM
server. CICS based COBOL and PL/I applications can easily invoke the deployed decisions in
CICS with the use of simple APIs. Business decisions are changed and deployed without the
need for application changes. Using the Operational Decision Manager enables this type of
loan processing solution to be highly agile, available, and scalable.

9.1.1 Solution requirements
Table 9-1 shows how the use of IBM Operational Decision Manager server deployed in a
CICS JVM server meets the major requirements of the loan processing project.

Table 9-1 Project requirements

Requirement Solution

Ability to change decision logic quickly
and frequently for greater business agility

Modernize applications by incrementally
externalizing business rules from COBOL
and PL/I applications and moving them to
IBM Operational Decision Manager.

Ensure that implementing Operational
Decision Manager does not increase
costs

IBM Operational Decision Manager server
running within a CICS JVM server is
eligible to run in CICS VUE regions.

High availability Because applications can connect to any
CICS VUE region in an IBM CICSPlex
environment, client applications are not
dependent on the availability of a specific
CICS region.

High scalability The use of a CICSPlex enables a scalable
solution that takes advantage of the
resources across the parallel sysplex.
New instances of CICS VUE regions can
be easily introduced in the CICSPlex
System Manager as business growth
dictates.

Workload balancing The CICSPlex automatically enables full
workload balancing.
86 A Software Architect’s Guide to Java Workloads in IBM CICS Transaction Server

9.2 Architecture

The key feature of running the Decision Server within the CICS JVM server is its availability
across the sysplex. This enables CICS transactions to run in multiple application-owning
regions (AORs) and to access the rules that are running in multiple rule-owning regions
(RORs). This is illustrated in the high-level architecture for this project shown in Figure 9-1.

Figure 9-1 IBM Operational Decision Manager in CICS JVM server scenario

In Figure 9-1, you can see how multiple instances of the loan processing application can be
running in AORs across the sysplex, with all of them processing messages from the same
shared-request queue to maximize throughput by using a request-reply messaging pattern.
The scenario consists of the loan processing request arriving from multiple channels in a
shared queue. It triggers the loan processing CICS transaction in the AOR.

The loan processing transaction needs to call a decision service to determine loan eligibility.
The decision service has been deployed in the Operational Decision Manager Decision
Server in the CICS VUE region identified as an ROR. The transaction in the AOR dynamically
routes the request to the ROR by using CICSPlex System Manager (SM) Workload Manager
(WLM). The use of WLM allows the decision request to be routed dynamically to the ROR.
This provides a highly available workload managed solution.

zNALC LPAR1

CICS VUE
JVM SERVER

ODM

zNALC LPAR2

CICS VUE
JVM SERVER

ODM

LPAR 1

CICS AOR

TXN

LPAR 2

CICS AOR

TXN

SYSPLEX
CHANNELS

Web

Mobile

Request Queue

Applications

Others

Response Queue

CPSM
WLM

CPSM
WLM
Chapter 9. Implementing decision management in CICS TS 87

9.3 Implementation

The configuration consists of a set of cloned CICS application-owning regions spread across
two LPARs in a parallel sysplex environment. The configuration also consists of a set of
cloned CICS rule-owning regions in zNALC LPARs. The CICS AORs share access to a
request queue that is held in the coupling facility.

9.3.1 Rule application development

There were multiple phases in the implementation of a rule-based system for the bank:

� Rule discovery, analysis, and design

The first phase consisted of harvesting , analysis, and design of rules. The eligibility rules
are embedded in the IBM client’s CICS COBOL application. The application team and the
business analysts worked together in this phase. A sample code snippet of eligibility rules
is shown in Figure 9-2.

Figure 9-2 Eligibility code

During the discovery phase, duplicate rules were found embedded in the application code.
The business team validated the rules and worked in conjunction with the information
technology (IT) team.

The existing program used a generic copybook for the entire application and was 5 KB
long. The loan processing rules use only certain attributes to make a decision, and it is not
a good practice to send unwanted data to the rules engine. A new copybook was built for
the loan processing rule set. The COBOL copybook layout was designed for parameters to
Operational Decision Manager.
88 A Software Architect’s Guide to Java Workloads in IBM CICS Transaction Server

The layout of the newly designed COBOL copybook is shown in Figure 9-3.

Figure 9-3 Rule parameters in the COBOL copybook

� Writing and testing rules

After the rules are designed, authoring is done through Rules Designer or Decision
Center. The rules are then arranged in a rule flow to be exposed as a loan eligibility
decision service. Business rules can be authored with any of these:

– Action rules
– Decision tables
– Decision trees

See “Authoring business rules” in the IBM Knowledge Center for a detailed explanation:

http://ibm.co/1zrlExe

A sample of the “Minimum Credit Score” rule is shown in Figure 9-4. This is an example of
an action rule.

Figure 9-4 Credit score rule

After the rules are developed and packaged, they are arranged in a rule flow, as shown in
Figure 9-5. This shows how a loan eligibility decision service is written.
Chapter 9. Implementing decision management in CICS TS 89

http://ibm.co/1zrlExe

Figure 9-5 Eligibility decision service rule flow

The next step is testing the rule set to be sure that it gives the results that you expect.
Decision Validation Services (DVS) are used for testing the accuracy of the rules. The tests
are executed in either the Decision Center or Rule Designer, which provides added
debugging capabilities. Test scenarios are built with input variables and expected results. A
scenario represents the values of the input parameters of a rule set, which include the input
data to rule set execution plus any expectations on the execution results that you want to test.
The scenarios are built in a Microsoft Excel worksheet, as shown in Figure 9-6.

Figure 9-6 Test scenario parameters

9.3.2 Runtime configuration

This section describes the runtime configuration.

CICS setup
This topology uses two different types of CICS regions to run rules:

� The rule-owning region (ROR)
� The application-owning region (AOR)

The rule-owning region hosts a zRule Execution Server for z/OS instance that runs locally in a
CICS JVM server. The application-owning region uses a CICS distributed program link (DPL)
or WLM to run rules in a rule-owning region. The rule-owning region requires a Rule
Execution Server console that runs in a separate address space from the CICS region and
has a unique subsystem identifier (HBRSSID). A DB2 database provides the persistence
layer. The rule-owning region must be run in CICS Transaction Server V4.2 or later. The
90 A Software Architect’s Guide to Java Workloads in IBM CICS Transaction Server

application-owning region must be on CICS Transaction Server V3.2 or later. Figure 9-7
depicts the topology.

Figure 9-7 CICS AOR and ROR topology

You can find a detailed CICS setup description for ROR and AOR in “Configuring topologies 2
and 3: CICS rule and application-owning regions” in the IBM Knowledge Center:

http://ibm.co/1rVE62k

From a CICS TS infrastructure standpoint, the following tasks were completed to configure
the topology:

� CICS ROR setup

– Install Operational Decision Manager for z/OS by using SMP/E.

– Customize the Operational Decision Manager topology to create the CICS ROR JCL.

– Run the CICS ROR JCL to create the JVM profile and working paths in HFS or zFS.

– Enable the CICS started task JCL for DB2 by adding the DB2 libraries in the STEPLIB
concatenation. The IBM Language Environment® library and SHBRCICS Operational
Decision Manager library are added to the DFHRPL concatenation.

– Define CICS resources by submitting the HBRCSD and HBRCSDJ JCL.

– Edit the CICS System Initialization Table (SIT) parameters for JVMPROFILEDIR and
GRPLIST.

– Copy the HBRJVM profile from the Operational Decision Manager work path location to
the JVMPROFILEDIR directory for the CICS region.
Chapter 9. Implementing decision management in CICS TS 91

http://ibm.co/1rVE62k

– Start CICS and issue the HBRC transaction to initialize the Decision Server in CICS.

� CICS AOR setup

– Customize the Operational Decision Manager topology to create the AOR JCL.

– Edit the Operational Decision Manager JCL HBRCSD so that the HBRCJVMS program is
defined as a remote server program, and submit the job.

– Edit the SHBRPARM(HBRCICSZ) parm member. Change the HBRTARGETRES variable to
RCICSJVM (for remote execution).

– Edit the CICS started task JCL to add the SHBRCICS Operational Decision Manager
library to the DFHRPL concatenation. Also, add a new HBRENVPR DD card with the
data set members SHBRPARM(HBRCICSZ) and SHBRPARM(HBRCMMN).

– Start CICS and issue HBRC transaction.

9.3.3 Deployment and integration

A Rule Execution Server console is a started task on IBM z/OS, and there is only one console
for the topology described. The Rule Execution Server console provides a web-based
graphical interface that you use for managing and monitoring RuleApps, rule set archives,
and Java execution object models (XOMs). It can also be used to monitor execution traces
from the Decision Warehouse, test rule set execution, and view server information. Figure 9-8
on page 92 shows a screen capture of the Rule Execution Server console.

Figure 9-8 Rule Execution Server console

After the RuleApp is packaged, it is deployed to all of the zRES servers through the console.
There are many ways to deploy the RuleApp. For additional documentation, see “Overview:
Deployment options” in the IBM Operational Decision Manager section of the IBM Knowledge
Center:

http://ibm.co/1tVk2r1

Important: Ensure that APAR PI07861 is installed on DB2 for z/OS. This resolves an issue
where the rule-owning region enters a tight loop when accessing DB2 to load the rule
applications.
92 A Software Architect’s Guide to Java Workloads in IBM CICS Transaction Server

http://ibm.co/1tVk2r1

The next step is to integrate the rule execution within the CICS COBOL program. The existing
code was remediated and an API call was introduced, as shown in Figure 9-9.

Figure 9-9 Rule Execution API call

The benefit with the Operational Decision Manager approach is the agility. If the business
rules are modified and deployed to the Decision Server, the piece of code remains the same.

Figure 9-10 shows the bank’s chosen implementation of the CICS AOR and ROR in a
CICSPlex environment.
Chapter 9. Implementing decision management in CICS TS 93

Figure 9-10 CICS and Operational Decision Manager High Availability configuration

The configuration used in Figure 9-8 on page 92 consists of these components:

� Two CICS AORs
� Two CICS RORs

9.4 Solution summary

The use of Operational Decision Manager within a CICS JVM server with a queue-sharing
group provides a scalable solution for loan processing and ensures maximum availability for
planned and unplanned outages.
94 A Software Architect’s Guide to Java Workloads in IBM CICS Transaction Server

Part 5 Modern Batch feature

This part introduces the benefits of using modern batch processing, especially when using
programs written in Java for batch purposes. It explains how the IBM WebSphere batch
environment can be used to schedule and manage batch applications in IBM CICS
Transaction Server for z/OS Value Unit Edition.

Part 5
© Copyright IBM Corp. 2014. All rights reserved. 95

96 A Software Architect’s Guide to Java Workloads in IBM CICS Transaction Server

Chapter 10. Modern batch workloads

This chapter describes the IBM CICS Transaction Server for z/OS (CICS TS) Feature Pack for
Modern Batch, which can be installed in CICS TS V4.2 or later. It enables the WebSphere
batch environment to schedule and manage batch applications in CICS.

First, we explain the need for a modern batch environment. Then, we review the types of
workloads that it is suitable for and the architecture of the solution. The key design
considerations when building a batch application to run in CICS TS are highlighted.

This chapter covers the following topics:

� 10.1, “Business pressures on traditional batch processing” on page 98
� 10.2, “WebSphere Java batch and batch container services” on page 101
� 10.3, “Introduction to CICS batch support” on page 107
� 10.4, “Running batch applications in CICS” on page 108
� 10.5, “Reasons to run a batch application in CICS” on page 110
� 10.6, “Benefits of running batch jobs within CICS” on page 110
� 10.7, “Implications of running batches in CICS” on page 111

10
© Copyright IBM Corp. 2014. All rights reserved. 97

10.1 Business pressures on traditional batch processing

Business models have changed. The need now is to have access to data near-real-time data.
Therefore, thsoe who still use the traditional batch model are under constant pressure to
change to a real-time model. Some of the reasons are described in the following sections.

10.1.1 The “dedicated batch” window is disappearing

There was a time when “batch” and “online” processing were separate from one another.
Online processing used to be stopped so that batch processing could have access to the
system resources to complete its work.

But those days are behind us. Online processing is becoming a 24x7 operation. This is
because client access is increasingly global, with people from different time zones seeking
access at all times of the day and night. There might be times when online processing is
greatly reduced, but in most cases, it is never stopped altogether. This means that batch and
online processing must work at the same time. The window of time available for dedicated
batch processing is shrinking. Figure 10-1 shows the batch processing today and the
shrinking batch window.

Figure 10-1 Batch processing time available today

The advent of mobile devices means that client access is now even more frequent than
before. The transaction work that flows back to information processing systems because of
mobile device activity is increasing. Mobile device activity may occur at any time of night or
day, so it is truly a 24x7 world for online processing.

But batch processing has not gone away. There are still requirements to do batch work. But it
is evident that batch and online work must be processed at the same time and in a manner
that implies that both work cooperatively.
98 A Software Architect’s Guide to Java Workloads in IBM CICS Transaction Server

10.1.2 The value of shared services

It is not just that the batch window that is shrinking. The cost pressures on maintaining the
batch and online transaction processing (OLTP) environments are increasing, too. Having
separate infrastructures for online and batch process requires separate computers, separate
tools, and separate support staff. Figure 10-2 shows the efficiencies of consolidation of batch
and OLTP staff.

Figure 10-2 Efficiencies through consolidation

The trend is in the direction of convergence. Online and batch processing are both
information processing, and, as such, can and should be handled in a cooperative, converged
manner. This offers efficiencies in infrastructure, staff, development tools, and, potentially,
Java assets that can be shared between OLTP and batch processes.

10.1.3 Java for batch processing

Some readers might ask “Why use Java when COBOL works well?”

Batch assets written in COBOL are still very useful. To the extent that Java is relevant, it is to
complement COBOL, not as a total replacement.

However, there are business pressures that make Java an attractive batch solution:

� Skills

Java skills are simply more plentiful than COBOL skills. Many organizations have very
good Java development skills. It makes sense to leverage those Java skills for batch work
as well.

� Tools

Today’s development tools are powerful and quite sophisticated. Acquiring them also
represents an investment in technology and an investment in skills. It makes good sense
to leverage that investment across multiple information processing disciplines.

� CICS Transaction Server Value Unit Edition (VUE)

A Java batch workload running in a CICS JVM server is eligible for CICS VUE pricing. This
attractive pricing model is a financial motivation for running batches within CICS.
Chapter 10. Modern batch workloads 99

� Specialty engines

COBOL runs on general processors, but Java runs on specialty engines. Specialty
engines (System z Integrated Information Processors, or zIIPs) provide a way to lower
overall System z acquisition and licensing costs. Specialty engines are an attractive
solution, and leveraging them for batch work is desirable.

� Cooperative processing

Online processing runtime infrastructures are often designed around Java. For example,
CICS Transaction Server for z/OS is a powerful online processing run time. There is an
investment in maintaining that online infrastructure. That investment can be leveraged for
batch work also.

Therefore, using Java for batch processing is an area of growing interest and is already in use
in many large processing operations.

10.1.4 Conflicting needs of CICS applications and z/OS batch applications

It is common for an online CICS application to update resources. For some resources, such
as VSAM files, CICS maintains a record and image lock to prevent other applications from
making conflicting updates and to be able to restore records in case of a failure. In these
cases, the resources need to be opened exclusively by CICS.

A traditional z/OS batch application can be defined as a job written in job control language
(JCL) that is submitted to the z/OS job entry subsystem (JES) for execution and does not
need user input to complete. For example, it reads all records from a VSAM input file and, for
each one, updates a VSAM master file and creates a summary report. However, the master
file may be opened for exclusive use by CICS and thus be unavailable to the batch
application.

In this scenario, there are several choices:

� Close the master file in CICS and start the batch application, which starts by making a
backup of the master file.

Then, process all of the records, make the updates, delete the backup, and re-open the
master file in CICS. If the batch application fails, the backup of the master file is restored,
and either the issue is fixed immediately and the batch application is re-started or the
issue is fixed later.

This choice results in a period of time, referred to as the batch window, during which the
master file and the online applications that use that file are not available.

� Code the batch application to send a request to an online CICS application to make each
update to the resources locked by the online application.

If each request is committed individually, for example, by using the CICS nontransactional
External Communications Interface (EXCI), that causes data integrity issues if the batch
application fails. This because if the batch application is restarted, some updates will be
executed twice. If all requests were committed together, for example, using transactional
EXCI, this can result in many records being locked by the online application for an
extended time, causing unacceptable delays for other applications.

� For VSAM resources, use record-level sharing (RLS) to maintain record locks for the batch
application. However, the batch application is unlikely to maintain its own recoverable logs
due to the complexity of writing them. Therefore, if the batch application fails, the records
already updated are not restored, and that leads to data integrity issues.
100 A Software Architect’s Guide to Java Workloads in IBM CICS Transaction Server

� For VSAM resources, use Data Facility Storage Management Subsystem (DFSMS)
transactional VSAM services to lock and log record images before updates. However,
unless the application implements its own checkpoints, many records can be locked for an
extended period, causing unacceptable delays for other applications.

In addition, as companies provide their services across more locations and time zones and
customers require services at times of day to suit them, there is a growing need for online
applications to be available continuously, 24x7. Also over time, batch applications are
expected to process an increasing amount of data and there is a need to drive down costs.
Therefore, in the event of the batch application failing, it is unacceptable to restart it from the
beginning. Instead there is a requirement to restart from a frequent checkpoint.

10.2 WebSphere Java batch and batch container services

In this section, we describe the batch environment, WebSphere Java batch, and the batch
container framework.

10.2.1 Definition of a batch environment

The batch environment is a managed environment for batch applications that are scheduled,
process large amounts of information, and may take many hours to complete. The batch
environment provides a powerful failover model based on checkpoint and restart scenarios.
This is essential to efficiently manage, run, and restart batch applications, in particular when
batch application resources are shared with online transaction processing.

The batch environment has two primary components:

� The job scheduler is responsible for determining when and where to dispatch a job,
monitoring the job, and reporting back to its caller.

� Endpoints (batch containers) are where the batch application runs. Jobs are dispatched to
an endpoint from the job scheduler. The job runs and, upon completion, the job log and
return code is provided back to the job scheduler.

10.2.2 CICS functions

CICS is a modern general-purpose transaction processing environment for online
applications that start as a result of a request received through a terminal, web service, or
message. It typically processes a small amount of information within subseconds. CICS
provides the following capabilities:

� Administration, security, and transaction facilities, such as authorization, data integrity,
workload management, logging, tracing, debugging, statistics, and monitoring

� API and development tools, such as named counter and XML conversion

� Shared access to resources, such as temporary storage, data tables, IBM DB2 databases,
IBM Information Management System (IMS), and Virtual Storage Access Method (VSAM)
data sets or files

� Communications, such as web services, WebSphere Optimized Local Adapters, IBM MQ,
HTTP, and sockets
Chapter 10. Modern batch workloads 101

10.2.3 WebSphere Java batch

First, it’s necessary to understand the high-level architecture of IBM WebSphere Java batch
WebSphere Application Server software provides what is known as a “Java EE” (Java
Enterprise Edition) runtime. Java EE is an industry-standard specification for an application
server that provides a long list of standard application specifications.

Part of the design of this Java EE runtime is the concept of a container. Containers are simply
runtime functions that provide managed services to the programs that run in the containers.
Container-managed services mean tjat the applications can focus on their core business logic
and not have to implement common functions. WebSphere Application Server already had
web and Enterprise JavaBeans (EJB) containers. The addition of the WebSphere Java batch
function adds a third batch container.

Like other containers, the batch container provides function services to the batch applications
that run in the container. The CICS Modern Batch Feature pack extends WebSphere Java
batch management and execution realm. It allows CICS TS to participate as a WebSphere
Java batch endpoint server. Figure 10-3 shows a summary listing of some of those services
provided by the batch container of a WebSphere Java batch.

Figure 10-3 WebSphere batch container

The next thing to understand is the job management and execution model provided by
WebSphere Java batch. The Java batch separates several key elements of batch processing,
as shown in Figure 10-4 on page 103:

� Job submission: This is done through a defined interface called the Job Management
Console (JMC). It provides a view of the batch environment and allows you to submit and
manage jobs.

� Job description: The job description is specified in an XML file called xJCL. This avoids
hardcoding job properties in the application code. The job properties file is used to tell the
job submission function what the job is and how to run it. We will describe xJCL later in the
chapter.

� Job dispatching: The job dispatching function signals to the endpoint to begin execution of
the batch code named in the job declaration file (xJCL). The job dispatching function
102 A Software Architect’s Guide to Java Workloads in IBM CICS Transaction Server

interprets the xJCL, dispatches the job to the endpoint where the batch application
resides, and provides ability to stop and restart jobs.

� Job execution: The execution of the job takes place in an endpoint, which is a batch
container where the Java batch application is deployed.

� Job development and deployment: Java batch applications implement the batch logic, and
they are deployed to the batch containers. The development libraries and tools assist in
the creation of the batch applications.

Figure 10-4 Job Management and Execution Model

In the section that follows, we describe the job control language, integration with enterprise
schedulers and the batch middleware framework that are supported in CICS TS Feature Pack
for Modern Batch.

10.2.4 Job control language

The job control language for modern batch is an XML file called xJCL. It describes the Java
class files that are used in a batch step and the steps that are included in the batch job. The
first thing to understand is the concept of xJCL.

xJCL is a job declaration file. Conceptually, xJCL is just like a normal JCL. It describes the job
to be run and the context in which the job is to operate. The difference is that xJCL is written
in XML. The xJCL file is used to tell the batch run time that a job invocation is being requested
and to provide the runtime understanding of what job to run and to details about the job (like a
regular JCL). Figure 10-5 on page 104 shows a trimmed version of an actual xJCL file.
Chapter 10. Modern batch workloads 103

Figure 10-5 xJCL file snippet

10.2.5 Integration with enterprise schedulers

The point of integration on z/OS is still with the enterprise scheduler submitting JCL.
Figure 10-6 shows how the integration of enterprise schedulers and the job dispatcher
function happens.

Figure 10-6 Integration with enterprise schedulers

The job dispatcher function is hosted in a WebSphere Application Server and has several
interfaces. The one used for this integration is a message-driven bean (MDB) interface. The
“glue” between enterprise scheduler JCL submission and the dispatcher is a supplied
program that uses messaging (IBM MQ or the service integration bus, or SIBus, of
WebSphere Application Server) to submit Java batch jobs to WebSphere Java batches. That
“glue” utility is known as WSGRID. The enterprise scheduler sees a batch job as the
WSGRID invocation.
104 A Software Architect’s Guide to Java Workloads in IBM CICS Transaction Server

10.2.6 Checkpoint and job restart services

Checkpoint commit and rollback is a function of the batch container. This function is
abstracted away from the batch job and is handled by the batch container. It relies on the
CICS sync point API to do this. These key items are important to note:

� Checkpoint interval (record or time) is specified in the xJCL file.

� As checkpoint intervals are reached, the container commits the records that the
checkpoint attained.

� In the event of a failure, the job may be restarted at the last good checkpoint.

Figure 10-7 shows the concepts of checkpoint processing.

Figure 10-7 Checkpoint processing

10.2.7 Data record read and write support services

The batch container provides batch data streams (BDS) for externalizing data access from the
job step. This provides a way of abstracting the data read and write logic away from the batch
step code.
Chapter 10. Modern batch workloads 105

Several batch data streams are provided:

� Read and write byte data from file
� Read and write text file
� Read from a VSAM key-sequenced data set (KSDS) as input data to the job
� update in a VSAM KSDS data set
� Retrieve data from a database using a JDBC connection
� Write data to a database using a JDBC connection

The Feature Pack for Modern Batch also provides access to the full set of Java class library
for CICS (JCICS) APIs.

10.2.8 Job resiliency services

The batch container provides services for the batch job to skip records where a data read or
write operation throws an exception. It can also retry job steps for an unhandled exception.

Skip-record processing
This service provides a way of tolerating a data read or write errors so the job can continue.
The objective is to provide mechanism to survive the odd data exception rather than stop the
job. Figure 10-8 shows skip-record processing.

Figure 10-8 Skip-record processing
106 A Software Architect’s Guide to Java Workloads in IBM CICS Transaction Server

Retry-step processing
This service provides a way of retrying the job step in the event of an exception. If successful
on retry, the job continues and your processing completes. This is at a higher level from
skip-record processing. It is at the “invoke batch step” level. This provides a way to retry the
step for exceptions. The batch container falls back to the last good checkpoint and restarts
from there. Figure 10-9 depicts the retry-step processing. The xJCL provides the following
information to the container:

� How many retry steps may be attempted
� What exceptions to consider for retry-step processing
� Alternatively, what exceptions to exclude from retry-step processing

Figure 10-9 Retry-step processing

10.3 Introduction to CICS batch support

In this section, we describe CICS support for modern batches and how batch processing fits
within the CICS environment.

10.3.1 CICS support for modern batch

The CICS TS Feature Pack for Modern Batch installs in the CICS region and presents to a
WebSphere Java batch dispatcher (dispatcher) as another endpoint to which it can dispatch
work. That provides Java batch management for the WebSphere Java batch runtime model,
with CICS being an endpoint.

The Feature Pack for Modern Batch function is configured to communicate over the network
to the dispatcher, telling the dispatcher about the CICS Feature Pack presence and the Java
batch application deployed there. When an xJCL file is submitted to the dispatcher for the
Java batch program deployed in the CICS Feature Pack, the dispatcher communicates across
the network to invoke and monitor the progress of the batch program. This allows a CICS
region to become a job endpoint for a WebSphere Java batch dispatching server, which puts
batch logic much closer to the CICS data, as shown in Figure 10-10 on page 108.
Chapter 10. Modern batch workloads 107

Figure 10-10 CICS TS Feature Pack for Modern Batch

10.4 Running batch applications in CICS

In this section, we review a solution to resolve the conflicting needs of batch and online
applications. It can be used to develop a batch application that uses the batch programming
model and runs the application in CICS.

These are the key behavioral aspects of such a batch application:

� The batch application shares access to resources with online applications.

� The batch application creates regular checkpoints to free up transactional resourcest so
that online applications are not blocked from completing for excessive amounts of time.

� If the batch application fails, it can be restarted from its most recent checkpoint.

� Both batch and online applications run concurrently.

The batch application can be divided into job steps that execute in parallel against different
subsets of the input data, to shorten the overall elapsed time to process the job.

10.4.1 WebSphere batch environment architecture

The CICS TS Feature Pack for Modern Batch provides an endpoint called the batch
container, which runs in a Java virtual machine (JVM) in the CICS address space. The job
scheduler interacts with the batch container to start, stop, and manage batch applications.
These components are required for the batch implementation within CICS TS:

� WebSphere Application Server 8.5 or later
� CICS Transaction Server 4.2 or above
� CICS TS Feature Pack for Modern Batch

Note: The endpoint provides this checkpoint capability on behalf of the applications.
108 A Software Architect’s Guide to Java Workloads in IBM CICS Transaction Server

Figure 10-11 depicts this architecture and the interaction among the components.

Figure 10-11 CICS provides an endpoint for the WebSphere batch environment

When started in CICS, the batch container loads a configuration file that details which batch
applications it can run, how to connect to the job scheduler, and how the job scheduler can
connect to it. The batch container registers with the job scheduler and informs the scheduler
of the batch applications it can run. Then, it periodically sends status information to the
scheduler, which states that it is still active and available for work.

The starting and processing of a job are detailed by using the numbers in the diagram in
Figure 10-11:

1. JCL is submitted on z/OS to request that the batch application start. The JCL runs the
WSGRID program and passes the location of an xJCL document to it.

2. The WSGRID program connects to the job scheduler and passes the xJCL location.
Alternate interfaces are provided to start a batch application, including a console,
command-line interface, and programmatic API.

3. The job scheduler examines the xJCL to establish the name of the batch application to
dispatch and uses the information published to it from all endpoints to select which
endpoint should run the batch application. The job scheduler chooses a batch container
hosted in CICS. It then connects to the batch container, passing the xJCL to it.

4. The batch application runs within the CICS batch container.

When the batch application is running in the batch container in CICS, it can use Java APIs,
such as JDBC, or the CICS Java APIs (JCICS) to access CICS resources and services,
including VSAM files. It also uses the APIs to call existing CICS programs written in other
languages, such as COBOL, C/C++, PL/I, and Assembler.
Chapter 10. Modern batch workloads 109

As the job runs, the batch container takes checkpoints, which enable the batch application to
be restarted from the last successful checkpoint in the event of a failure. When the batch
application completes, the batch container notifies the job scheduler.

10.5 Reasons to run a batch application in CICS

There are various reasons to run batch applications in CICS:

� When you can reduce costs by taking advantage of the CICS VUE pricing model

CICS modern batch workload is eligible to run in a CICS VUE region and take advantage
of the pricing model. This would substantially reduce the processing costs.

� When there is pressure to reduce or eliminate the batch window

If CICS is used for online transaction processing and those online applications need to be
available for longer each day, it can make sense to run batch jobs in CICS.

� When CICS has opened resources exclusively that are needed for batch processing

If your batch needs access to resources that are opened exclusively by CICS, it can make
sense to run the batch application under the control of CICS.

� When the batch application does not need exclusive resource access

If the batch application runs at the same time as online applications, updates to the
resources being used by the batch job can be made by the online applications. To work in
this environment, the batch application needs to be tolerant of these changes.

� When you want to reuse CICS business logic in batch

Reuse of existing business logic between online applications and batch helps to reduce
duplication and can make it quicker and easier to develop new applications. It is likely that
there is significant business logic contained within existing CICS online applications. This
logic can be invoked using the JCICS equivalent of the EXEC CICS LINK API.

10.6 Benefits of running batch jobs within CICS

The following benefits can result from running batch jobs in CICS:

� Online CICS applications can be available closer to 24 hours a day.

By running online applications and batch applications in parallel, there is less need to take
the CICS managed resources offline.

� Capabilities provided by the batch container simplify application development.

Capabilities such as checkpointing, recovery to last checkpoint after a failure, logging, and
trace are provided by the batch container, removing the need for the application developer
to provide these capabilities.

� A common batch programming model is used.

The batch environment provides a common batch programming model across runtimes
and platforms. Therefore, any developers who are skilled in batch environment application
development should be able to write a batch application to run in CICS.

� People with Java skills are readily available.

Java is a well-known, popular, modern language. Batch job steps and batch data streams
are written in Java.
110 A Software Architect’s Guide to Java Workloads in IBM CICS Transaction Server

� Modern batch within CICS is eligible for Value Unit Edition pricing.

CICS modern batch workload is eligible to run in a CICS VUE region and take advantage
of the pricing model. This substantially reduces the processing costs.

� Java functions are included.

Functions such as email, PDF file generation, and XML processing are readily available
for Java. This can make it easy to develop batch functions that might be more challenging
to implement in languages such as COBOL or PL/I.

10.7 Implications of running batches in CICS

Running a batch job under the control of CICS means that the job has different behavioral
characteristics. These are some of the implications of running a batch job in CICS.

� Batch jobs might take longer to run.

Traditional z/OS batch jobs are typically optimized to run as quickly as possible. When a
batch job is moved to CICS, it might have to share resources with online applications.
These resources can be CPU resources, files, or databases. Therefore, it is possible that
the batch job might take longer to complete. At the same time, with the removal of the
batch window, it might be that the batch job can start earlier or complete later. For batch
jobs with hard time deadlines, investigation is required to understand whether the job can
complete in the time required.

� Implications regarding online application performance need to be considered.

It is important that the batch processing does not negatively affect the performance of
online applications. A user who is invoking a CICS transaction might expect a response
time of tenths of a second. If the batch application locks too many resources at a time, it
could affect the performance of the online applications. The checkpoint interval of the
batch job can be adjusted to change the number of updates made within a checkpoint. If
the batch job consumes too much of the CPU resources, this can also affect the
performance of the online applications.

� Data being updated by batch processing can be changed by online applications.

Batch applications that rely on a set of records to remain consistent may not work when
run in parallel with online applications, because the online applications can update records
that the batch job has read or is about to read. This needs to be considered on a per
application basis to determine whether it is likely to be an issue.

� Traditional batch jobs need factoring.

If you plan to move an existing batch job to CICS, the job needs refactoring to fit into the
batch programming model.

10.8 Summary

Batch processing has proved to be an efficient, manageable and reliable method for bulk
processing of updates to data. As businesses expand, the volume of data to be processed
also expands. At the same time, the growth of online transactional workloads suggests that a
new paradigm is needed to enable the two processing styles to work better together. The
CICS batch container provides this new capability.
Chapter 10. Modern batch workloads 111

112 A Software Architect’s Guide to Java Workloads in IBM CICS Transaction Server

Chapter 11. Modern batch use scenario

This chapter describes an IBM CICS Transaction Server (TS) modern batch scenario where a
Java batch application is developed to reduce the batch window. The Java batch accesses
data in VSAM or IBM DB2 without the need to stop the online transactions that access to the
same data. The Java batch application may come from a new requirement or may be
rewritten from existing business logic. We review the architecture and the implementation of
the modern batch Java solution.

11
© Copyright IBM Corp. 2014. All rights reserved. 113

11.1 Java batch approaches

There are two approaches to using Java batch processing:

� Use Java batch for new applications.

In this approach, you can leave existing batch processes as they are, but engineer new
requirements in the Java batch model. If a batch application has complex algorithms and
huge calculations, needs to access to the data controlled by CICS TS where the data
access is either in share mode, or holds the exclusive lock or a short time, the application
is a good candidate for modern batch processing.

� Re-engineer existing batch processes.

Re-engineering is not an easy thing to do, but IBM provides tools to help Java interact with
structured data. For more information, see Chapter 8 in the IBM Redbooks publication
titled IBM CICS and the JVM server: Developing and Deploying Java Applications,
SG24-8038:

http://www.redbooks.ibm.com/abstracts/sg248038.html?Open

11.2 Architecture

In this section, we introduce the architecture to use modern batch processing.

11.2.1 Workflow

Figure 11-1 on page 115 shows the architecture of how a Java batch works with CICS TS. At
the front, enterprise schedulers such as IBM Tivoli Workload Scheduler can be used to
schedule a batch request from z/OS JCL. The JCL is submitted to WSGRID client that is
provided by WebSphere Application Server and is used to interact with Java batches and to
integrate the batch system with the enterprise schedules. The WSGRID client reads the job
properties from XML Job Control Language (xJCL) and then sends the request to the job
scheduler in WebSphere Application Server. The job scheduler then schedules the job to
endpoints (batch containers) in CICS TS.

To allow a CICS TS region to become a job endpoint for a WebSphere Java batch dispatching
server, CICS TS TS Feature Pack for Modern Batch V1.0 must be installed. After a Java
batch application is deployed in a CICS TS batch container, CICS TS communicates with the
WebSphere Application Server dispatcher function host and port. That lets the dispatcher
know that the endpoint is present and what batch application is deployed.

The batch container provides batch data streams (BDS) as a means of externalizing data
access from the job step. For more information, see “Batch data streams provided by CICS” in
the IBM Knowledge Center:

http://ibm.co/1vmpKCw

In addition, the CICS Feature Pack for Modern Batch provides access to the full set of JCICS
APIs. For more information about JCICS services and examples, see “JCICS API services
and examples” in the IBM Knowledge Center:

http://ibm.co/1I6xvXw

Now, let’s focus more on how to access to VSAM files, because VSAM is the most common
data source for batch processing. CICS TS JCICS services support reading and updating a
114 A Software Architect’s Guide to Java Workloads in IBM CICS Transaction Server

http://www.redbooks.ibm.com/abstracts/sg248038.html?Open
http://ibm.co/1vmpKCw
http://ibm.co/1I6xvXw

VSAM file but do not support opening or closing a file. So, if the file is not owned by the Java
batch region but it owned by another CICS TS region for online transactions, you have two
solutions:

1. Function ship file operations to a file-owned region (FOR)

This solution is shown in Figure 11-1 on page 115. Here, we route all of the file work by
function shipping to a FOR running in a normal z/OS LPAR to complete the file read and
update.

In this method, the Java workload is in a zNALC-enabled LPAR, and the workload for file
operations is included in a normal z/OS LPAR. You do not need to care about file open and
close, and the best thing is that modern batches can run concurrently with online
transactions.

2. Use record-level sharing (RLS) for VSAM file access

RLS is another solution that enables modern batch to work concurrently with online
transactions and thus reduces the batch window. RLS is a VSAM data set access mode
introduced in DFSMS and supported by CICS. RLS enables VSAM data to be shared, with
full update capability, between many applications running in many CICS regions. With
RLS, CICS regions that share VSAM data sets can reside in one or more IBM MVS™
images within an MVS sysplex.

FOR and RLS are preferred solutions for Java modern batch processing. You can select a
solution based on the existing VSAM access method used by your online transactions.

Figure 11-1 Architecture of a pure Java batch solution

11.2.2 High availability consideration

To achieve the high availability, you can set up two or even more batch containers for the
same batch application. The batch containers can be deployed in the same CICS region or in
separate CICS regions in the same LPAR, or even in CICS regions in separate LPARs. All of
the batch containers send the heartbeat information to the job scheduler at regular intervals.
So, from the view of the job scheduler, all of these batch contents are candidates to run the
same batch applications. After one container fails, the job scheduler cannot hear the
heartbeat from that container, so all of the requests go to the live ones.

Enterprise Scheduler
Example: IBM Tivoli
Workload Scheduler,
CA Workload Automation
CA 7, or BMC
Control - M

z/OS JCL

WSGRID

Client

xJCL

Websphere
Application
Server

Job
scheduler

zNALC enabled LPAR
CICS Transaction server

JVM server

Batch
container

Java
application

TDQ

MQ

DB2

z/OS LPAR

CICS transaction
server (FOR)

Mirror transaction

VSAM
Chapter 11. Modern batch use scenario 115

Even if you select only one batch container, CICS modern batch processing can achieve
better availability than the traditional batch processing by using checkpoints. In the traditional
batch, you usually store a backup copy of the master file before running the batch, restore the
file after a failure, and then rerun the batch. In the modern batch, the batch container creates
checkpoints. The batch application can be restarted from the last successful checkpoint in the
event of a failure. This reduces the time to recover from a failure, so it improves availability.

11.2.3 Security consideration

CICS Feature Pack for Modern Batch supports SSL client authentication to secure the
communication between the batch container and the job scheduler. You can turn on the
security setting in the batchcontainer-config.xml file. For more information, see
“Configuring the batch container” in the IBM Knowledge Center:

http://ibm.co/1FRNSDl

After the SSL handshake, the job scheduler can schedule the job to the batch containers in
CICS. The batch containers use TCPIPService to listen to the requests from the job
scheduler. Then, URIMAP is used to route the request to the batch applications. In the
URIMPAP definition, you can define the transaction ID and the user ID to run the batch
applications. The default transaction is CBCR. Make sure that the transaction is running
under an ID that has enough authority to access the resource. As online transactions, the
security of the resource is controlled by External Security Manager, which in most cases is
IBM RACF®.

11.3 Implementation

In this section, we describe basic steps to develop a Java batch application, deploy it in CICS
TS, and schedule it. The IBM Redbooks publication titled New Ways of Running Batch
Applications on z/OS: Volume 1 CICS Transaction Server, SG24-7991, includes more
detailed information about how to use IBM Rational Application Developer to develop a Java
batch application and to schedule it:

http://www.redbooks.ibm.com/abstracts/sg247991.html?Open

To use the CICS Feature Pack for Modern Batch, you must have the correct versions of
software and service installed. Your environment must comply with the following
prerequisites:

� CICS Transaction Server for z/OS, Version 4.2 or later
� CICS Transaction Server for z/OS, Version 4.2 requires APAR PM82511
� CICS Transaction Server for z/OS, Version 5.1 requires APAR PM82519
� IBM z/OS Version 1 Release 12 or later
� IBM DB2 Version 9.1 or later
� IBM WebSphere Application Server Version 8.5 for z/OS or later

or WebSphere Application Server Network Deployment 8.5 or later

11.3.1 Install and configure CICS TS TS Feature Pack for Modern Batch

CICS TS TS Feature Pack for Modern Batch is installed by using the SMP/E RECEIVE, APPLY,
and ACCEPT commands. The program number for CICS TS Feature Pack for Modern Batch is
5655-Y50, and the FMID is HCIF51B. You can use the sample jobs that are provided to
perform part or all of the installation tasks, or you can use the SMP/E dialogs to perform the
SMP/E installation steps.
116 A Software Architect’s Guide to Java Workloads in IBM CICS Transaction Server

http://ibm.co/1FRNSDl
http://www.redbooks.ibm.com/abstracts/sg247991.html?Open

For details about the installation procedure, see the Pubilcation Information web page for
CICS Transaction Server Feature Pack for Modern Batch V1.0 Program Directory, GI13-3324:

http://ibm.co/1FMqucg

Detailed steps are described in “Configuring the CICS Feature Pack for Modern Batch” in the
IBM Knowledge Center:

http://ibm.co/15OkVxe

11.3.2 Developing a batch application

You can develop applications with IBM Rational Application Developer or the CICS Explorer
SDK. Rational Application Developer is a preferred IDE to develop the batch application. But if
you do not have Rational Application Developer, you can use the Eclipse platform with CICS
TS Explore SDK at no charge.

The two most important things that you need to develop are XML Job Control Language
(xJCL) and Java class to implement the job step logic.

If you have Rational Application Developer, you can set up a batch project to easily generate
xJCL and a Java class template to implement your batch job steps, using a GUI.

Figure 11-2 shows an example of the generated xJCL from Rational Application Developer.
The xJCL describes how to run a batch job and defines the input and output streams to that
batch job. In the xJCL, you can define batch job steps, checkpoint algorithms, results
algorithms, batch data streams (BDS) and batch job return codes. For more information, see
“The batch programming model” in the IBM Knowledge Center:

http://ibm.co/1rWywXM
Chapter 11. Modern batch use scenario 117

http://ibm.co/1FMqucg
http://ibm.co/15OkVxe
http://ibm.co/1rWywXM

Figure 11-2 Extract of the generated xJCL
118 A Software Architect’s Guide to Java Workloads in IBM CICS Transaction Server

Figure 11-3 shows an extract of the generated Java class for the Batch Job Step. This class is
where the code for the job step will be added.

Figure 11-3 Extract of the generated Batch Job Step implementation class

After you get the generated Batch Job Step implementation class, you can add your specific
business logic there. Batch steps are implemented as plain old Java object (POJO) classes
that implement the interface, com.ibm.websphere.batch.BatchJobStepInterfance. Batch job
steps are performed sequentially. Callback methods in the BatchJobStepInterface allow the
grid endpoints to run batch steps when they run batch jobs. For more information, see “Batch
job steps” in the IBM Knowledge Center:

http://ibm.co/1ykJicK

If you do not have Rational Application Developer, you need to develop the xJCL and the job
step Java classes manually. Create a Java project to, first, add additional JARs in the build
path and then to write a Java class for each job step and write a xJCL file to describe how to
run the job. For detailed steps, see “Developing the sample application with CICS Explorer
SDK” in the IBM Knowledge Center:

http://ibm.co/1Aperyx

11.3.3 Deploying the batch application in CICS

First, export the application as a Java archive (JAR) file that contains the compiled Java
classes. Then, follow these steps to install the application in CICS:

1. Copy the JAR file from your workstation onto the mainframe. We used FTP to transfer the
file in binary mode. Store the file in a directory that CICS has permission to access.
Ensure that CICS has permission to read the JAR file, too.
Chapter 11. Modern batch use scenario 119

http://ibm.co/1ykJicK
http://ibm.co/1Aperyx

2. Modify the JVM profile for the JVM server where the batch container is running. Add the
JAR file to the CLASSPATH_SUFFIX. If you use external interfaces from other JAR files in
your batch project, and then these JAR files should also be added to the
CLASSPATH_SUFFIX.

3. The CICS JVMSERVER resource will need to be disabled and re-enabled to pick up the
changes to the class path.

4. Modify a configuration file named batchcontainer-config.xml to notify the scheduler that
CICS can run the batch job.

5. After re-enabling the JVMSERVER, run the CBCH transaction if it is not already running.

11.3.4 Submit the xJCL to run the batch job

Before you submit the xJCL, make sure that the default application name is the same as the
application name that you specified in the batchcontainer-config.xml file. Then you can submit
this xJCL from any supported enterprise scheduler. For example, if you use the Job
Management Console, log on to the web interface, specify the path to the xJCL on your local
workstation, and then submit the xJCL to the job scheduler. Figure 11-4 shows how to submit
a job from the Job Management Console.

Figure 11-4 Submitting a job from the Job Management Console

A message confirms that the job has been submitted successfully and provides the job ID.
When a job is successfully submitted, the job scheduler has identified at least one batch
container that claims to be able to run the job. The scheduler chooses a batch container and
dispatches the job to it.
120 A Software Architect’s Guide to Java Workloads in IBM CICS Transaction Server

You can examine the log for the job to see which batch container the scheduler has chosen to
dispatch the job to. Figure 11-5 shows a job log from the Job Management Console.

Figure 11-5 The job log view in the Job Management console

These steps show how to develop a batch application, to deploy it and to schedule it, see the
detailed steps in the IBM Redbooks publication titled New Ways of Running Batch
Applications on z/OS: Volume 1 CICS Transaction Server, SG24-7991:

http://www.redbooks.ibm.com/abstracts/sg247991.html?Open
Chapter 11. Modern batch use scenario 121

http://www.redbooks.ibm.com/abstracts/sg247991.html?Open

122 A Software Architect’s Guide to Java Workloads in IBM CICS Transaction Server

Related publications

The publications listed in this section are considered particularly suitable for more detailed
information about the topics covered in this book.

IBM Redbooks

The following IBM Redbooks publications provide additional information. Some publications
referenced in this list might be available in softcopy only.

� Configuring and Deploying Open Source with WebSphere Application Server Liberty
Profile, SG24-8194

� Flexible Decision Automation for Your zEnterprise with Business Rules and Events,
SG24-8014

� IBM CICS and the JVM server: Developing and Deploying Java Applications, SG24-8038

� Implementing IBM CICS JSON Web Services for Mobile Applications, SG24-8161

� New Ways of Running Batch Applications on z/OS: Volume 1 CICS Transaction Server,
SG24-7991

� Securing Your Mobile Business with IBM Worklight, SG24-8179

� WebSphere Application Server Liberty Profile Guide for Developers, SG24-8076

� WebSphere Application Server V8.5 Administration and Configuration Guide for Liberty
Profile, SG24-8170

You can search for, view, download, or order these publications and other Redbooks,
Redpapers, Web Docs, drafts, and additional materials on the Redbooks web page:

ibm.com/redbooks

Online resources

These web pages are also relevant for further information:

� CICS Transaction Server for z/OS Value Unit Edition

http://www.ibm.com/software/products/en/cics-ts-vue

� CICS Transaction Server for z/OS Feature Pack for Dynamic Scripting V2.0

http://ibm.co/1tAFmTt

� CICS Transaction Server: JEE application role security, IBM Knowledge Center

http://ibm.co/1pOCfed

� CICS Transaction Server: Liberty features, IBM Knowledge Center

http://ibm.co/1yD5Ed6

� CICS Transaction Server: The Liberty server angel process, IBM Knowledge Center

http://ibm.co/12nSggY
© Copyright IBM Corp. 2014. All rights reserved. 123

http://www.redbooks.ibm.com/abstracts/sg247991.html?Open
http://www.redbooks.ibm.com/abstracts/sg248170.html?Open
http://www.redbooks.ibm.com/abstracts/sg248014.html?Open
http://www.redbooks.ibm.com/abstracts/sg248014.html?Open
http://www.redbooks.ibm.com/abstracts/sg248038.html?Open
http://www.redbooks.ibm.com/abstracts/sg248161.html?Open
http://www.redbooks.ibm.com/abstracts/sg248179.html?Open
http://www.redbooks.ibm.com/abstracts/sg248194.html?Open
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.ibm.com/software/products/en/cics-ts-vue
http://ibm.co/1tAFmTt
http://ibm.co/1pOCfed
http://ibm.co/1yD5Ed6
http://ibm.co/12nSggY
http://www.ibm.com/software/products/en/cics-ts-vue
http://ibm.co/1tAFmTt
http://ibm.co/1pOCfed

� IBM Offering information page (announcement letters and sales manuals)

http://www.ibm.com/common/ssi/index.wss?request_locale=en

� IBM System z Software Pricing

http://www.ibm.com/systems/z/resources/swprice

� IBM System z Software Pricing: System z New Application License Charges (zNALC)

http://www.ibm.com/systems/z/resources/swprice/mlc/znalc.html

� WebSphere Application Server for z/OS: Developing servlets, IBM Knowledge Center

http://ibm.co/1tJ4C94

� WebSphere Application Server Liberty Core: Authentication, IBM Knowledge Center

http://ibm.co/1tAGVAI

� WebSphere Application Server Liberty Core: Configuration elements in the server.xml file,
IBM Knowledge Center

http://ibm.co/11PC7A0

� IBM WebSphere Application Server Migration Toolkit, IBM developerWorks

http://www.ibm.com/developerworks/websphere/downloads/migtoolkit/

� WebSphere Application Server Network Deployment: Bean validation, IBM Knowledge
Center

http://ibm.co/1HW5PnX

� WebSphere Application Server Network Deployment: Developing JSP files, IBM
Knowledge Center

http://ibm.co/15NYOal

� WebSphere Application Server Network Deployment: Developing web services - RESTful
services, IBM Knowledge Center

http://ibm.co/1AcAZ5v

� WebSphere Application Server Network Deployment: Java Architecture for XML Binding
(JAXB), IBM Knowledge Center

http://ibm.co/1yJ4xbM

� WebSphere Application Server Network Deployment: JavaScript Object Notation
(JSON4J), IBM Knowledge Center

http://ibm.co/1ycEawg

� WebSphere Application Server Network Deployment: JavaServer Faces, IBM Knowledge
Center

http://ibm.co/1HW3QjC

� WebSphere Application Server Network Deployment: JAX-WS, IBM Knowledge Center

http://ibm.co/1BakfiJ
124 A Software Architect’s Guide to Java Workloads in IBM CICS Transaction Server

http://www.ibm.com/common/ssi/index.wss?request_locale=en
http://www.ibm.com/systems/z/resources/swprice
http://www.ibm.com/systems/z/resources/swprice/mlc/znalc.html
http://ibm.co/1tJ4C94
http://ibm.co/1tAGVAI
http://ibm.co/11PC7A0
http://www.ibm.com/developerworks/websphere/downloads/migtoolkit/
http://ibm.co/1HW5PnX
http://ibm.co/15NYOal
http://ibm.co/1AcAZ5v
http://ibm.co/1yJ4xbM
http://ibm.co/1ycEawg
http://ibm.co/1HW3QjC
http://ibm.co/1BakfiJ

Help from IBM

IBM Support and downloads

ibm.com/support

IBM Global Services

ibm.com/services
 Related publications 125

http://www.ibm.com/support/
http://www.ibm.com/support/
http://www.ibm.com/services/
http://www.ibm.com/services/

126 A Software Architect’s Guide to Java Workloads in IBM CICS Transaction Server

(0.2”spine)
0.17”<

->
0.473”

90<
->

249 pages

A Softw
are Architect’s Guide to Java W

orkloads in IBM
 CICS

A Softw
are Architect’s Guide to Java

W
orkloads in IBM

 CICS Transaction

A Softw
are Architect’s Guide to

Java W
orkloads in IBM

 CICS
Transaction Server

A Softw
are Architect’s Guide to Java W

orkloads in IBM
 CICS Transaction Server

A Softw
are Architect’s Guide to

Java W
orkloads in IBM

 CICS
Transaction Server

A Softw
are Architect’s Guide to

Java W
orkloads in IBM

 CICS
Transaction Server

®

SG24-8225-00 ISBN 0738440256

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed
by the IBM International
Technical Support
Organization. Experts from
IBM, Customers and Partners
from around the world create
timely technical information
based on realistic scenarios.
Specific recommendations
are provided to help you
implement IT solutions more
effectively in your
environment.

For more information:
ibm.com/redbooks

®

A Software Architect’s Guide
to New Java Workloads in
IBM CICS Transaction Server

Review the
architectural and
technical benefits of
this approach

Get details about new
licensing models at
attractive prices

Learn about web and
mobile business rules
and batch workload
processes

This IBM Redbooks publication introduces the IBM System z New
Application License Charges (zNALC) pricing structure and provides
examples of zNALC workload scenarios. It describes the products that
can be run on a zNALC logical partition (LPAR), reasons to consider
such an implementation, and covers the following topics:

� Using the IBM WebSphere Application Server Liberty Profile to host
applications within an IBM CICS environment and how it interacts
with CICS applications and resources

� Security technologies available to applications that are hosted
within a WebSphere Application Server Liberty Profile in CICS

� How to implement modern presentation in CICS with a CICS Liberty
Java virtual machine (JVM) server

� How to share scenarios to develop Liberty JVM applications to gain
benefits from IBM CICS Transaction Server for z/OS Value Unit
Edition

� Considerations when using mobile devices to interact with CICS
applications and explains specific CICS technologies for connecting
mobile devices by using the z/OS Value Unit Edition

� How IBM Operational Decision Manager for z/OS runs in the
transaction server to provide decision management services for
CICS COBOL and PL/I applications

� Installing the CICS Transaction Server for z/OS Feature Pack for
Modern Batch to enable the IBM WebSphere batch environment to
schedule and manage batch applications in CICS

This book also covers plain old Java objects (POJOs). The CICS JVM
server is a full-fledged JVM that includes support for Open Service
Gateway initiative (OSGi) bundles. POJO applications can also qualify
for using the Value Unit Edition.

Back cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Go to the current abstract on ibm.com/redbooks
	Front cover
	Contents
	Notices
	Trademarks

	IBM Redbooks promotions
	Preface
	Authors
	Now you can become a published author, too
	Comments welcome
	Stay connected to IBM Redbooks

	Part 1 New workloads on the mainframe
	Chapter 1. Mainframe workload pricing
	1.1 Advantages of the Value Unit Edition pricing model
	1.2 CICS Transaction Server Value Unit Edition benefits
	1.3 Business value
	1.4 Why Java works on the mainframe
	1.5 When and where to put Java on System z
	1.6 Defying gravity
	1.7 Solution overview
	1.7.1 Using the Liberty profile to modernize interfaces
	1.7.2 Optimizing mobile workloads to connect with customers and employees
	1.7.3 Building timely, scalable decisions into software
	1.7.4 Updating batch processing

	1.8 Value Unit Edition incentives and implementation scenarios
	1.8.1 Do more sooner at less cost
	1.8.2 Do things faster

	Part 2 Liberty profile and CICS
	Chapter 2. Introduction to the Liberty JVM server
	2.1 Evolving application servers
	2.2 Advantages
	2.2.1 Liberty and the CICS Transaction Server for z/OS Value Unit Edition

	2.3 Strengths
	2.3.1 Simple configuration
	2.3.2 Runtime composition with features and services
	2.3.3 Developer focus

	2.4 Liberty in the CICS Transaction Server
	2.4.1 Integration with CICS TS Transaction Server for z/OS

	2.5 Security
	2.5.1 Introduction to security with Liberty in CICS TS
	2.5.2 Security overview
	2.5.3 The Liberty server angel process
	2.5.4 SAF roles

	Chapter 3. Using CICS Liberty JVM servers to develop application interfaces
	3.1 CICS Liberty JVM server scenarios
	3.1.1 Scenario one
	3.1.2 Scenario two

	3.2 CICS Liberty JVM server features for the presentation layer
	3.2.1 JavaServer Pages 2.2
	3.2.2 JavaServer Faces 2.0
	3.2.3 Java Servlet 3.0
	3.2.4 JavaScript Object Notation 1.0
	3.2.5 Java API for RESTful Web Services
	3.2.6 Java API for XML Web Services 2.2
	3.2.7 Java Architecture for XML Binding 2.2
	3.2.8 Bean Validation 1.0
	3.2.9 PHP support by Dynamic Scripting Feature Pack

	3.3 Migrate existing Java presentation logic to CICS Liberty JVM server

	Chapter 4. Porting JEE applications to a CICS Liberty JVM server
	4.1 Porting a Java application to a CICS Liberty JVM server
	4.1.1 Which Java applications should be migrated to CICS TS
	4.1.2 Using the OSGi framework

	4.2 Developing new application using JCICS classes
	4.2.1 Java access to records and their fields
	4.2.2 Debugging Java in CICS Liberty JVM server

	4.3 Developing new applications using other Liberty features
	4.3.1 CICS Liberty JVM server Java Database Connectivityoptions
	4.3.2 JDBC connection options

	Part 3 Mobile devices
	Chapter 5. Connecting mobile devices to CICS Transaction Server
	5.1 Mobile devices and IBM CICS Transaction Server for z/OS Value Unit Edition
	5.2 Use of mobile devices with CICS TS
	5.3 Accessing services by using XML and JSON
	5.3.1 Extensible Markup Language (XML)
	5.3.2 JavaScript Object Notation (JSON)
	5.3.3 Key differences between XML and JSON

	5.4 CICS TS web service development strategies
	5.4.1 Bottom-up service enablement
	5.4.2 Top-down service enablement
	5.4.3 Meet-in-the-middle service enablement

	5.5 IBM MobileFirst Platform Foundation and CICS TS
	5.6 IBM DataPower and CICS TS
	5.7 Configuration for high availability

	Chapter 6. Mobile devices and CICS Liberty JVM server
	6.1 Hosting transformation services in CICS Liberty JVM server
	6.1.1 Java API for XML Web Services (JAX-WS)
	6.1.2 Java API for RESTful Web Services (JAX-RS)

	6.2 z/OS Connect and CICS Liberty JVM server
	6.3 Connectivity from Java to CICS TS
	6.4 Security considerations
	6.5 Other considerations

	Chapter 7. Mobile devices and CICS TS Java
	7.1 Hosting transformation services in CICS TS Java
	7.2 Characteristics of CICS data transformation
	7.3 The Java-based pipeline
	7.4 Security considerations
	7.5 Other considerations

	Part 4 IBM Operational Decision Manager
	Chapter 8. Decision management integrated in IBM CICS Transaction Server
	8.1 Introduction to decision management
	8.1.1 Common business decisions that require managing
	8.1.2 Where most decisions are made today

	8.2 IBM Operational Decision Manager for z/OS
	8.2.1 Operational Decision Manager components
	8.2.2 Create decisions using the Rule Designer
	8.2.3 Centrally manage decisions by using the Decision Center
	8.2.4 Execute decisions by using the Decision Server

	8.3 CICS TS rule-owning region architecture
	8.3.1 Cost effectiveness

	8.4 Decision management summary

	Chapter 9. Implementing decision management in CICS TS
	9.1 Objectives
	9.1.1 Solution requirements

	9.2 Architecture
	9.3 Implementation
	9.3.1 Rule application development
	9.3.2 Runtime configuration
	9.3.3 Deployment and integration

	9.4 Solution summary

	Part 5 Modern Batch feature
	Chapter 10. Modern batch workloads
	10.1 Business pressures on traditional batch processing
	10.1.1 The “dedicated batch” window is disappearing
	10.1.2 The value of shared services
	10.1.3 Java for batch processing
	10.1.4 Conflicting needs of CICS applications and z/OS batch applications

	10.2 WebSphere Java batch and batch container services
	10.2.1 Definition of a batch environment
	10.2.2 CICS functions
	10.2.3 WebSphere Java batch
	10.2.4 Job control language
	10.2.5 Integration with enterprise schedulers
	10.2.6 Checkpoint and job restart services
	10.2.7 Data record read and write support services
	10.2.8 Job resiliency services

	10.3 Introduction to CICS batch support
	10.3.1 CICS support for modern batch

	10.4 Running batch applications in CICS
	10.4.1 WebSphere batch environment architecture

	10.5 Reasons to run a batch application in CICS
	10.6 Benefits of running batch jobs within CICS
	10.7 Implications of running batches in CICS
	10.8 Summary

	Chapter 11. Modern batch use scenario
	11.1 Java batch approaches
	11.2 Architecture
	11.2.1 Workflow
	11.2.2 High availability consideration
	11.2.3 Security consideration

	11.3 Implementation
	11.3.1 Install and configure CICS TS TS Feature Pack for Modern Batch
	11.3.2 Developing a batch application
	11.3.3 Deploying the batch application in CICS
	11.3.4 Submit the xJCL to run the batch job

	Related publications
	IBM Redbooks
	Online resources
	Help from IBM

	Back cover

